Перевод чисел из восьмеричной системы счисления в двоичную и обратно. Восьмеричную систему счисления перевести в двоичную систему


Как перевести число из двоичной системы в восьмеричную и шестнадцатеричную

Перевод чисел из двоичной системы счисления в восьмеричную, шестнадцатеричную или четвертичную и наоборот часто требуется для решения задач по теме Системы счисления. Чтобы перевести число из одной системы в другую, нужно использовать таблицу перевода чисел. А также можно воспользоваться онлайн калькулятором для перевода чисел из одной системы счисления в другую.

Таблица перевода чисел

Десятичная СС Двоичная СС Четвертичная СС Восьмеричная СС Шестнадцатеричная СС
1 1 1 1 1
2 10 2 2 2
3 11 3 3 3
4 100 10 4 4
5 101 11 5 5
6 110 12 6 6
7 111 13 7 7
8 1000 20 10 8
9 1001 21 11 9
10 1010 22 12 A
11 1011 23 13 B
12 1100 30 14 C
13 1101 31 15 D
14 1110 32 16 E
15 1111 33 17 F
16 10000 100 20 10

Как перевести число из двоичной системы счисления

Чтобы перевести число из двоичной системы счисления в четвертичную, восьмеричную или шестнадцатеричную систему, нужно воспользоваться алгоритмом перевода:

  1. Разбить двоичное число справа налево на группы по 2 (для четвертичной СС), 3 (для восьмеричной СС) или 4 (для шестнадцатеричной СС) цифры. Если слева не будет хватать цифр для полной группы, нужно дописать необходимое количество незначащих нулей.
  2. Заменить каждую группу цифр на ее аналог в соответствующей системе счисления.

Пример 1:

Перевести число 1111001102 из двоичной системы в четвертичную.

Решение:

Разбиваем число на группы по 2 цифры справа налево и заменяем каждую группу на аналог в четвертичной системе счисления из таблицы:

1111001102 = 01 11 10 01 10 = 132124

Пример 2:

Перевести число 1111001102 из двоичной системы в восьмеричную.

Решение:

Разбиваем число на группы по 3 цифры справа налево и заменяем каждую группу на аналог в восьмеричной системе счисления из таблицы:

1111001102 = 111 100 110 = 7468

Пример 3:

Перевести число 1111001102 из двоичной системы в шестнадцатеричную.

Решение:

Разбиваем число на группы по 4 цифры справа налево и заменяем каждую группу на аналог в шестнадцатеричной системе счисления из таблицы:

1111001102 = 0001 1110 0110 = 1E616

Как перевести число в двоичную систему счисления

Чтобы перевести число из четвертичной, восьмеричной или шестнадцатеричной системы счисления в двоичную, нужно воспользоваться алгоритмом перевода:

  1. Заменить каждую цифру на двоичный аналог, состоящий из 2 (для четвертичной), 3 (для восьмеричной) или 4 (для шестнадцатеричной) цифр. Если нужно, число дополняется нулями слева.
  2. Вычеркнуть из числа незначащие нули.

Пример 4:

Перевести число 1203234 из четвертичной системы в двоичную.

Решение:

Выполняем замену каждой цифры на группу из 2 цифр в двоичной системе счисления:

1203234 = 01 10 00 11 10 11 = 110001110112

Пример 5:

Перевести число 264750308 из восьмеричной системы в двоичную.

Решение:

Выполняем замену каждой цифры на группу из 3 цифр в двоичной системе счисления:

264750308 = 010 110 100 111 101 000 011 000 = 101101001111010000110002

Пример 6:

Перевести число 2AC0F7416 из шестнадцатеричной системы в двоичную.

Решение:

Выполняем замену каждой цифры на группу из 4 цифр в двоичной системе счисления:

2AC0F7416 = 0010 1010 1100 0000 1111 0111 0100 = 101010110000001111011101002

worksbase.ru

Восьмеричная система счисления - Программирование на C, C# и Java

Оглавление:Перевод из десятичной системы счисления в восьмеричнуюПеревод из восьмеричной системы счисления в десятичнуюПеревод из двоичной системы счисления в восьмеричнуюПеревод из восьмеричной системы счисления в двоичнуюПеревод из восьмеричной системы счисления в шестнадцатеричную и из шестнадцатеричной системы в восьмеричнуюПрименение восьмеричной системы счисления

Восьмеричная система – одна из основных систем счислений наряду с двоичной, десятичной и шестнадцатеричной, применяемая в информационных технологиях.

Как мы знаем, компьютеры «воспринимают» лишь двоичную систему счисления, состоящую только из нулей и единиц. Однако человеку довольно непривычно и неудобно работать с такими числами. Например, привычное нам десятичное число 2 143 в двоичной системе будет выглядеть как 100001011111.  Переводить числа из двоичной системы в десятеричную также не очень удобно и бывает довольно муторно.

В итоге было решено использовать альтернативные и более простые системы счисления: восьмеричную и шестнадцатеричную. Числа 8 и 16 являются степенями двойки (2 в третьей и 2 в четвёртой степени соответственно), поэтому выполнять преобразования из двоичной системы и наоборот гораздо легче, чем при десятичной системе счисления, которая не может похвастаться своей причастностью к степеням числа 2.

Кроме того, числа в восьмеричной системе как минимум более приятны глазу и гораздо короче, чем их аналоги в двоичной системе. Так, например, в восьмеричной системе то же число 2 143 будет записываться как 4137.

В восьмеричной системе счисления, как уже можно было догадаться, основанием является цифра 8 и, соответственно, она вмещает в себя только восемь цифр: от 0 до 7. Поэтому числа в восьмеричной системе счисления очень похожи на десятичные, в отличие от шестнадцатеричных, где присутствуют буквы латинского алфавита или двоичных, состоящих только из двух цифр. Отличают эти две системы тем, что в восьмеричной отсутствуют цифры 8 и 9, а также, очевидно, нижними индексами: у числа в десятичной системе прибавляют нижний индекс с цифрой 10, а к числам в восьмеричной системе приписывают цифру 8, например:

Восьмеричная система счисления Теперь давайте научимся переводу чисел в восьмеричную систему счисления и наоборот.

Перевод из десятичной системы счисления в восьмеричную

Давайте попробуем изучить перевод десятичного числа в восьмеричное на примере. После этого примера вы без проблем сможете переводить любые числа в эту систему.

Возьмём десятичное число 15 450 и попробуем перевести его в восьмеричную систему счисления.

Для начала нам необходимо разделить исходное число на основание системы, в которую мы хотим это число перевести. Для восьмеричной системы это число 8. То есть мы делим 15 450 на 8.

Перевод из десятичной системы счисления в восьмеричную

Происходит деление в столбик, но, в отличие от стандартного деления, мы не находим неполные частные, а делим сразу всё делимое на 8. Наибольшим числом, при котором 15 450 делится без остатка на 8 будет число 1 931. 1931 * 8 = 15 448. Теперь мы вычитаем из 15 450 полученное число 15 448, у нас получился остаток 2. Выделяем эту двойку, так как это уже кусочек нашего числа в восьмеричной системе.Продолжаем: теперь делим полученное на предыдущем шаге частное на 8:

Перевод из десятичной системы счисления в восьмеричную

Всё точно так же: наибольшим числом, при котором 1 931 делится без остатка на 8 будет число 241. При умножении 241 на 8 получается число 1 928. Ищем разность между 1 931 и 1928 – получается 3. Выделяем её. Далее делим 241 на 8.

Перевод из десятичной системы счисления в восьмеричную

Получается число 30, умножив его на 8, получаем 240. Вычитаем из 241 это число, получается 1. Выделяем единицу.Продолжаем деление до тех пор, пока частное не станет меньше 8!

Перевод из десятичной системы счисления в восьмеричнуюИтак, делим 30 на 8, получается 3,75, отбрасываем дробную часть, получается 3. Умножаем 3 на 8, получается 24. 30 – 24 = 6. Выделяем шестёрку. Мы закончили деление так как 3 меньше 8. Обязательно выделяем последнее частное тоже (у нас это цифра 3).

Выделенные красным цифры – это и есть наше число в восьмеричной системе, НО они написаны наоборот. То есть, чтобы правильно прочитать число в восьмеричной системе, необходимо сделать это справа налево.

Перевод из десятичной системы счисления в восьмеричную

Таким образом, десятичное число 15 45010 в восьмеричной системе будет выглядеть как 36 1328.

Итого, алгоритм перевода чисел из десятичной системы в восьмеричную следующий:

  1. Разделить исходное число на 8. Найти максимальное частное и убрать дробную часть от него. Например, исходное число 20 : 8 = 2,5. Значит в частное мы записываем число 2.
  2. Умножить полученное частное на 8. Записать его под исходным числом.
  3. Найти остаток между этими числами и выделить его – это кусочек переведённого в восьмеричную систему числа.
  4. Затем разделить в столбик полученное частное на 8, записать ответ и проделать шаги 2 и 3.
  5. Производить деление до тех пор, пока делимое не станет меньше 8. Выделить это делимое тоже.
  6. Выписать все выделенные числа справа налево (т.е. последнее делимое будет на первом месте, затем идёт остаток, найденный на последнем шаге, затем остаток, найденный на предпоследнем шаге и т.д.). Полученное при такой записи число и будет нашим искомым восьмеричным.

Теперь перейдём к переводу восьмеричного числа в десятичную систему счисления.

Перевод из восьмеричной системы счисления в десятичную

Перевести восьмеричное число в десятичное даже проще, чем наоборот. Давайте рассмотрим пример: переведём восьмеричное число 36078 в десятичное.

Для начала мы делаем такую запись: с конца берём каждую цифру нашего исходного числа, каждое из них умножаем на 8, и все в целом складываем. Должно получиться примерно так:

Перевод из восьмеричной системы счисления в десятичную

Однако, это ещё не всё! После того, как мы сделали подобную запись, ко всем числам 8, на которые умножаются цифры исходного числа, необходимо добавить степени в порядке возрастания: 0, 1, 2 и т.д. Обязательно необходимо начинать с нулевой степени!

Перевод из восьмеричной системы счисления в десятичную

Всё, что остаётся после этого – просто посчитать. В итоге у нас получилось число 1927 в десятичной системе.

Перевод из двоичной системы счисления в восьмеричную

Перевод чисел из двоичной системы счисления в восьмеричную – довольно необычное дело для тех, кто никогда с этим не сталкивался. Однако на деле всё не так пугающе, как может показаться с первого раза.

Давайте попробуем. Допустим, у нас есть двоичное число 1010010001011101100.

Для начала нам необходимо разбить это число на триады – группы из трёх цифр. Почему именно три цифры? Как мы знаем, у систем счислений имеются основания. И у двоичной системы основание – 2. Нам необходимо перевести двоичное число в восьмеричную систему с основанием 8. Математически это можно записать так:

Перевод из двоичной системы счисления в восьмеричную

Найти i, пожалуй, не составит труда: i = 3, то есть, для записи одного восьмеричного числа в двоичной системе необходимо 3 бита или, говоря иначе – 3 двоичные цифры. Поэтому мы и будем разбивать двоичное число на триады. Однако надо запомнить, что делать это надо с младшего бита. Бит – это одна цифра в двоичном числе. Чем дальше бит от начала числа, тем он младше. Самый младший бит – это последняя цифра двоичного числа. Иными словами, мы разбиваем число на триады, начиная с конца.

Перевод из двоичной системы счисления в восьмеричную

Внимание: если старшая триада не заполнена, до конца, перед ней необходимо дописать столько нулей, чтобы получилась полноценная триада.

Перевод из двоичной системы счисления в восьмеричную

Теперь всё, что нам остаётся – это перевести каждую из этих триад из двоичной системы счисления в восьмеричную. Это можно сделать самостоятельно:

Перевод из двоичной системы счисления в восьмеричную

Для этого в каждой отдельной триаде (начиная с первой) нужно каждую цифру (начиная с последней) умножить на 2, возведённую в степени от 0 до 2, и сложить полученные три числа.

Затем, полученные результаты по каждой отдельной триаде надо выписать, начиная с самой первой. Записанное число и будет нашим конечным результатом в восьмеричной системой счисления.

Однако можно сильно облегчить себе задачу, не высчитывая все триады числа, а просто сверяя каждую из них по таблице соответствия двоичных чисел восьмеричным, например, по такой:

Перевод из двоичной системы счисления в восьмеричную

Теперь можно просто смотреть на триаду, сверять её с таблицей и записывать число, соответствующее ей в восьмеричной системе.

Перевод из восьмеричной системы счисления в двоичную

Самым удобным способом перевода из восьмеричной системы счисления в двоичную является использование таблицы соответствий. Итак, допустим, мы хотим перевести восьмеричное число 36702 в двоичную систему. Что же нам делать? Мы берём первую цифру нашего исходного числа – 3. Ищем её по таблице соответствия – в двоичной системе это 011. Берём следующую цифру – 6 и ищем её в таблице, находим 110, и так далее. Продолжаем, пока не переведём все восьмеричные цифры в триады. В итоге у нас получится необходимое двоичное число.

Внимание: Если в старших битах (то есть в самом начале двоичного числа) имеются нули, необходимо убрать их до первой единицы. Например, как на изображении ниже. В старшем бите у нас получился ноль при переводе восьмеричной тройки, и мы убрали его. Это делается для удобства, потому что зачем хранить и писать незначащие цифры.

Перевод из восьмеричной системы счисления в двоичную

Перевод из восьмеричной системы счисления в шестнадцатеричную и из шестнадцатеричной системы в восьмеричную

К сожалению, несмотря на то, что эти системы счисления близки друг к другу, напрямую перевести друг в друга нельзя. Легче всего при переводе этих двух систем друг в друга воспользоваться посредничеством двоичной системы. То есть, перевести восьмеричную систему счисления в двоичную, разделив число на триады и воспользовавшись таблицей соответствий, а затем перевести это число из двоичной системы в шестнадцатеричную с помощью тетрад. И наоборот: перевести число из шестнадцатеричной системы в двоичную, а затем уже из двоичной системы в восьмеричную описанными выше способами.

Применение восьмеричной системы счисления

В прошлом веке выпускались компьютеры, в которых использовались 12-ти, 24-х и 36-битные слова. Это, например, модель ICT 1900 (1964 год), а также PDP-8, выпущенная в 1965 году – это коммерчески довольно успешная модель миникомпьютера в своё время. Кроме того, некоторые мейнфреймы от компании IBM использовали восьмеричную систему. В компьютерах, размер машинного которых кратен тройке, очень удобно использовать систему с основанием восемь, поскольку всегда все биты из слова можно представить в виде целого количества цифр в восьмеричной системе. Например, слово из 24-х бит, можно записать в виде 8-ми восьмеричных чисел.

Если говорить про использование восьмеричной системы в жизни людей, то известно, что в индейских языках Юки (Калифорния) и Паме (Мексика) использовалась данная система. Индейцы считали предметы не по количеству пальцев на руках, а по количеству промежутков между ними.

 

Восьмеричная система счисления

5 (100%) 8 votes

Поделиться в соц. сетях:

vscode.ru

Системы счисления - Перевод чисел из одной системы счисления в другую

Перевод чисел в десятичную систему счисления

Перевод из двоичной системы в десятичную

Преобразуем двоичное число 1001011 из первого примера

Пример Перевести число 11010101 из двоичной системы в десятичную.
Преобразуем число:

110101012= 1 * 27 + 1 * 26 + 0 * 25 + 1 * 24 + 0 * 23 + 1 * 22 + 0 * 21 + 1 * 20=128+64+0+16+0+4+0+1=21310

Перевод из восьмеричной системы в десятичную

Преобразуем восьмеричное число 572.

Пример Перевести число 572 из восьмеричной системы в десятичную.
Преобразуем число:

5728=5 * 82 + 7 * 81 + 2 * 80=320+56+2=37810

Перевод из шестнадцатеричной системы в десятичную

Числа в шестнадцатеричной системе состоят из цифр 0-9 и букв A, B, C, D, E, F, таблица соответствия:

десятичная 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
шестнадцатеричная 1 2 3 4 5 6 7 8 9 A B C D E F

Преобразуем шестнадцатеричное число A5C.

Пример Перевести число A5C из шестнадцатеричной системы в десятичную.
Преобразуем число:

A5C16= 10 * 162 + 5 * 161 + 12 * 160 =2560+80+12=265210

calcs.su

Основные понятия

Основные понятия 2

Преобразование чисел из одной системы счисления в другую 4

Перевод целого числа из десятичной системы в другую позиционную систему счисления 4

Перевод правильной десятичной дроби в любую другую позиционную систему счисления 5

Перевод числа из двоичной (восьмеричной, шестнадцатеричной) системы в десятичную. 6

Перевод из двоичной системы счисления в шестнадцатеричную и обратно. 7

Перевод из двоичной системы счисления в восьмеричную и обратно. 9

Арифметические операции в позиционных системах счисления 12

Сложение 12

Вычитание 13

Умножение и деление в двоичной системе 14

MAC адрес. 15

Упражнения 17

Система счисления– это совокупность правил наименования и изображения чисел с помощью набора символов, называемых цифрами.

Используются три типа систем счисления:

  • позиционная – представление числа зависит от порядка записи цифр.

  • непозиционная – представление числа не зависит от порядка записи цифр

  • смешанная – нет понятия «основание»: либо оснований несколько, либо оно вычисляемое

В непозиционных системах вес цифры (т.е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа.

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Например, в числе 757,7 первая семерка означает 7 сотен, вторая – 7 единиц, а третья – 7 десятых долей единицы.

Сама же запись числа 757,7 означает сокращенную запись выражения

700 + 50 + 7 + 0,7 = 7∙102 + 5∙101 + 7∙100 + 7∙10-1 = 757,7.

Любая позиционная система счисления характеризуется своим основанием.

Основание позиционной системы счисления — это количество различных знаков или символов, используемых для изображения цифр в данной системе.

За основание системы можно принять любое натуральное число — два, три, четыре и т.д. Следовательно, возможно бесчисленное множество позиционных систем: двоичная, троичная, четверичная и т.д. Запись чисел в каждой из систем счисления с основанием q означает сокращенную запись выражения

an-1 qn-1 + an-2 qn-2+ ... + a1 q1 + a0 q0 + a-1 q-1 + ... + a-m q-m,

где ai – цифры числа; n и m – число целых и дробных разрядов, соответственно.

Таблица 1. Эквиваленты чисел в различных системах счислений

Системы счисления

Десятичная

Двоичная

Восьмеричная

Шестнадцатеричная

0

0

0

0

1

1

1

1

2

10

2

2

3

11

3

3

4

100

4

4

5

101

5

5

6

110

6

6

7

111

7

7

8

1000

10

8

9

1001

11

9

10

1010

12

A

11

1011

13

B

12

1100

14

C

13

1101

15

D

14

1110

16

E

15

1111

17

F

Преобразование чисел из одной системы счисления в другую Перевод целого числа из десятичной системы в другую позиционную систему счисления

При переводе целого десятичногочисла в систему с основаниемqего необходимо последовательноделитьнаqдо тех пор, пока не останется остаток, меньший или равныйq–1. Число в системе с основаниемqзаписывается как последовательность остатков от деления, записанных в обратном порядке, начиная с последнего.

  1. в двоичную:

7510 = 1 001 0112 2610=110102

  1. в восьмеричную:

7510= 1138 24110=3618

  1. в шестнадцатеричную:

7510= 4B16362710=Е2В16

Перевод правильной десятичной дроби в любую другую позиционную систему счисления

При переводе правильной десятичной дробив систему счисления с основаниемqнеобходимо сначала саму дробь, а затем дробные части всех последующих произведений последовательноумножатьнаq, отделяя после каждого умножения целую часть произведения. Число в новой системе счисления записывается как последовательность полученных целых частей произведения.

Умножение производится до тех пор, пока дробная часть произведения не станет равной нулю. Это значит, что сделан точный перевод. В противном случае перевод осуществляется до заданной точности.

  1. в двоичную:

0,3510= 0,010112 0,562510=0,10012

или

0,84710=0,11012

  1. в восьмеричную:

0,3510 = 0,2638 0,6562510=0,528

  1. в шестнадцатеричную:

0,3510= 0,5916 0,84710=0,D8D16

studfiles.net

Двоичная восьмеричная шестнадцатеричная системы счисления

 

Двоичная система счисления

Для представления чисел в микропроцессоре используется двоичная система счисления. При этом любой цифровой сигнал может иметь два устойчивых состояния: «высокий уровень» и «низкий уровень». В двоичной системе счисления для изображения любого числа используются две цифры, соответственно: 0 и 1. Произвольное число x=anan-1..a1a0,a-1a-2…a-m запишется в двоичной системе счисления как

x = an·2n+an-1·2n-1+…+a1·21+a0·20+a-1·2-1+a-2·2-2+…+a-m·2-m

где ai — двоичные цифры (0 или 1).

Восьмеричная система счисления

В восьмеричной системе счисления базисными цифрами являются цифры от 0 до 7. 8 единиц младшего разряда объединяются в единицу старшего.

Шестнадцатеричная система счисления

В шестнадцатеричной системе счисления базисными цифрами являются цифры от 0 до 15 включительно. Для обозначения базисных цифр больше 9 одним символом кроме арабских цифр 0…9 в шестнадцатеричной системе счисления используются буквы латинского алфавита:

1010 = A16      1210 = C16      1410 = E16 1110 = B16      1310 = D16      1510 = F16.

Например, число 17510 в шестнадцатеричной системе счисления запишется как AF16. Действительно,

10·161+15·160=160+15=175

В таблице представлены числа от 0 до 16 в десятичной, двоичной, восьмеричной и шестнадцатеричной системах счисления.

Десятичная Двоичная Восьмеричная Шестнадцатеричная
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10

Двоично-восьмеричные и двоично-шестнадцатеричные преобразования

Двоичная система счисления удобна для выполнения арифметических действий аппаратными средствами микропроцессора, но неудобна для восприятия человеком, поскольку требует большого количества разрядов. Поэтому в вычислительной технике помимо двоичной системы счисления широкое применение нашли восьмеричная и шестнадцатеричная системы счисления для более компактного представления чисел.

Три разряда восьмеричной системы счисления реализуют все возможные комбинации восьмеричных цифр в двоичной системе счисления: от 0 (000) до 7(111). Чтобы преобразовать двоичное число в восьмеричное, нужно объединить двоичные цифры в группы по 3 разряда (триады) в две стороны, начиная от разделителя целой и дробной части. При необходимости слева от исходного числа нужно добавить незначащие нули. Если число содержит дробную часть, то справа от него тоже можно добавить незначащие нули до заполнения всех триад. Затем каждая триада заменяется восьмеричной цифрой.

 Пример: Преобразовать число 1101110,012 в восьмеричную систему счисления.

Объединяем двоичные цифры в триады справа налево. Получаем

001 101 110,0102 = 156,28.

Чтобы перевести число из восьмеричной системы в двоичную, нужно каждую восьмеричную цифру записать ее двоичным кодом:

156,28 = 001 101 110,0102.

 Четыре разряда шестнадцатеричной системы счисления реализуют все возможные комбинации шестнадцатеричных цифр в двоичной системе счисления: от 0 (0000) до F(1111). Чтобы преобразовать двоичное число в шестнадцатеричное, нужно объединить двоичные цифры в группы по 4 разряда (тетрады) в две стороны, начиная от разделителя целой и дробной части. При необходимости слева от исходного числа нужно добавить незначащие нули. Если число содержит дробную часть, то справа от нее тоже нужно добавить незначащие нули до заполнения всех тетрад. Затем каждая тетрада заменяется шестнадцатеричной цифрой.

Пример: Преобразовать число 1101110,112 в шестнадцатеричную систему счисления.

Объединяем двоичные цифры в тетрады справа налево. Получаем

0110 1110,11002 = 6E,C16.

Чтобы перевести число из шестнадцатеричной системы в двоичную, нужно каждую шестнадцатеричную цифру записать ее двоичным кодом:

6E,C16 = 0110 1110,11002.

Назад: Представление данных и архитектура ЭВМ

prog-cpp.ru

Перевод чисел из восьмеричной системы счисления в двоичную и обратно

Таблица соответствия (двоично-восьмеричныйкод):

Х8У2

0000

1001

2010

3011

4100

5101

6110

7111

Для того чтобы перевести число из восьмеричной системы счис-

ления в двоичную, каждую восьмеричную цифру нужно заменитьтриадой двоичных цифр.

Пример:

−275,68 = −010 111 101, 1102 = −10111101,112

(Полученный результат подтверждает пример из раздела “Перевод смешанных десятичных чисел в другие системы счисления”.)

Для перевода числа из двоичной системы счисления в восьмерич-

ную, его нужно разбить натриады вправо и влево от запятой, дополняя при этом в случае необходимости крайние левую и правую триады нулями до полных.

Пример:

1010,01112 = 001 010, 011 1002 =12,348

28

Перевод чисел из шестнадцатеричной системы счисления в двоичную и обратно

Таблица соответствия (двоично-шестнадцатеричныйкод):

00000

10001

20010

30011

40100

50101

60110

70111

81000

91001

A1010

B1011

C1100

D1101

E1110

F1111

Для того чтобы перевести число из шестнадцатеричной систе-

мы счисления в двоичную, каждую шестнадцатеричную цифру нужно заменитьтетрадой двоичных цифр.

Пример:

− BD,5F16 = −1011 1101, 0101 11112

29

Сравните дробную часть полученного двоичного числа с результа-

том перевода дробного десятичного числа 0,3710 в двоичную систему счисления. Разница в последнем знаке определяется округлением при переводе этого числа как в двоичную(0,3710 ≈ 0,0101111...2 ), так и в ше-

стнадцатеричную (0,3710 ≈ 0,5F...16 ) системы счисления.

Для перевода числа из двоичной системы счисления в шестна-

дцатеричную, его нужно разбить натетрады вправо и влево от запятой, дополняя при этом в случае необходимости крайние левую и правую тетрады нулями до полных.

Примеры:

1) 10111101,112 =1011 1101, 11002 = BD,C16

(см. перевод целого десятичного числа 189 в двоичную и шестнадцатеричную системы счисления и дробного десятичного числа 0,75 в двоичную и шестнадцатеричную системы счисления)

2) 1010,01112 =1010,

01112 = A,716

Но с другой стороны

1010,01112 =12,348 (см. перевод чисел из

двоичной системы счисления в восьмеричную), таким образом

A,716 =12,348 и переход от шестнадцатеричной системы счисления к восьмеричной и обратноможно осуществлять в два этапа, через двоичную систему счисления, используя двоично-восьмеричный и двоичношестнадцатеричный код.

30

Следует отметить, что при рассмотрении умножения двоичных, восьмеричных и шестнадцатеричных чисел (см. выше) в примерах использовались одни и те же числа:

11011,12 =33,48 =1B,816 ; 11,012 =3,28 =3,416 .

В этом можно легко убедиться, используя двоично-восьмеричныйидвоично-шестнадцатеричныйкод. Таким же образом можно убедиться и в том, что результаты умножения одинаковы:

1011001,0112 =131,38 =59,616 .

31

studfiles.net

Правила перевода чисел из одной системы счисления в другую

    1. Перевод целого положительного числа из десятичной системы счисления в любую другую позиционную систему

Для перевода целого десятичного числа N в систему счисления с основанием q необходимо:

1. разделить исходное число N на основание системы q

2. выделить целую часть частного и остаток. Остаток будет являться младшим разрядом числа

3. целая часть принимается за исходное число и повторяется пункт 1 до тех пор, пока целая часть будет > q.

ПРИМЕР:Переведем число 53 из десятичной системы счисления в двоичную, восьмеричную и шестнадцатеричную.

в двоичную

в восьмеричную

в шестнадцатеричную

Сделаем проверку. Используя формулу (1), переведем найденные числа в десятичную систему счисления.

110 1012 = 1х25 + 1х24 + 0х23 + 1х22 + 0х21 + 1х20 = 32+ 16+ 0+ 4 + 0+ 1 = 5310

658 = 6 х 81 + 5 х 80 = 48 + 5 = 5310

3516 = 3 х 161 + 5 х 160 = 48 + 5 = 5310

ЗАДАНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ.Перевести целое число из десятичной системы счисления в двоичную, восьмеричную и шестнадцатеричную, аналогично примеру и сделать проверку.

Номер варианта

Число

Номер варианта

Число

1

123

9

276

2

165

10

142

3

205

11

213

4

247

12

178

5

134

13

235

6

226

14

153

7

181

15

253

8

268

16

194

    1. Перевод правильной десятичной дроби в любую другую позиционную систему счисления

Для перевода правильной десятичной дроби (дробь, в которой целая часть =0) F в систему счисления с основанием q необходимо:

1. Умножить исходное число f на основание системы q

2. Выделить целую и дробную части произведения. Целая часть является старшим после запятой разрядом искомого числа. Считать дробную часть произведения исходным числом и повторить пункт 1.

Умножение продолжается до тех пор, пока дробная часть произведения не станет равной 0 или не будет достигнута требуемая точность числа.

ПРИМЕР:Переведем число 0,375 из десятичной системы счисления в двоичную, восьмеричную и шестнадцатеричную.

в двоичную

в восьмеричную

в шестнадцатеричную

ПРИМЕР:Переведем число 0,6 из десятичной системы счисления в двоичную, восьмеричную и шестнадцатеричную.

в двоичную

в восьмеричную

в шестнадцатеричную:

ЗАДАНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ.Переведите десятичную дробь в двоичную, восьмеричную и шестнадцатеричную системы счисления.

Номер варианта

Число

Номер варианта

Число

1

0,12

9

0,51

2

0,36

10

0,17

3

0,42

11

0,83

4

0,54

12

0,28

5

0,67

13

0,49

6

0,23

14

0,62

7

0,76

15

0,31

8

0,94

16

0,92

Для чисел, имеющих целую и дробную части, перевод из десятичной системы счисления в другую осуществляется отдельно для целой и дробной части.

ПРИМЕР:53,37510 = 110 101,0112 = 65,38 = 35,616

    1. Перевод восьмеричных и шестнадцатеричных чисел в двоичную систему счисления

Для перевода восьмеричных и шестнадцатеричных чисел в двоичную систему счисления каждая цифра числа заменяется на двоичный эквивалент, состоящий из трех двоичных разрядов (триада) для восьмеричного числа или четырех двоичных разрядов (тетрада) для шестнадцатеричного числа.

ПРИМЕР:Перевести восьмеричное число 652,18 и шестнадцатеричное число 652,116 в двоичное.

652,18 = 110 101 010, 0012 652,116 = 0110 0101 0010, 000116

6 5 2 1 6 5 2 1

ПРИМЕР:Перевести шестнадцатеричное число 1А3,F16 в двоичное.

1А3,F16 = 1 1010 0011, 11112

1 А 3 F

ЗАДАНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ.Перевести восьмеричное и шестнадцатеричное числа в двоичную систему счисления.

Номер варианта

Числа

Номер варианта

Числа

1

1538, 4D116

9

2438, C4F16

2

4138, 13D716

10

1578, C1216

3

3108, 1A816

11

5178, BF1016

4

6208, 9AB16

12

7108, CE4516

5

2618, F56116

13

3678, FF116

6

5468, 8E416

14

4038, 12A716

7

1658, CDE16

15

6348, AFE16

8

7658, 12AA16

16

2378, 12B16

studfiles.net