Все формулы высоты, медианы, биссектрисы равнобедренного треугольника. Как найти биссектрису в равнобедренном треугольнике


Как найти биссектрису треугольника?

Одной из основ геометрии является нахождение биссектрисы, луча, делящего угол пополам. Биссектриса треугольника представляет собой часть биссектрисы любого угла. Это отрезок от вершины угла до пересечения с противоположной стороной треугольника.

Если вывести биссектрисы из всех углов, то они пересекутся в одной точке, которая называется центр вписанного треугольника.

Вычислить биссектрису можно, если знать длину стороны, которую она делит пополам, или же величины углов треугольника.

Биссектриса равнобедренного треугольника

Поскольку в равнобедренном треугольнике две стороны равны друг другу, то и биссектрисы прилегающих углов будут равными. Т.к. углы треугольника также равны.

При проведении биссектрисы из одного из углов, она будет считаться высотой данного треугольника и его медианой.

Задачи, как найти биссектрису треугольника, решаются с применением формул.

Для решения данных формул в условии должны быть обозначены значения длин сторон, или величин углов треугольника. Зная их, можно вычислить биссектрису по косинусам, либо по периметру.

Например, берем равнобедренный треугольник ABC и проводим биссектрису AE к основанию BC. Полученный треугольник AEB – прямоугольный. Биссектриса – это его высота, сторона AB – гипотенуза прямоугольного треугольника, а BE и AE – катеты.

Применяется теорема Пифагора – квадрат гипотенузы равен сумме квадратов катетов. Исходя из нее BE = v (AB - AE). Поскольку AE – это медиана треугольника ABC, то катет BE = BC/2. Таким образом, BE = v (AB - (BC /4)).

В случае, если задан угол основания ABC, то биссектриса треугольника AEB, AE = AB/sin(ABC). Угол основания AEB, BAE = BAC/2. Поэтому биссектриса AE = AB/cos (BAC/2).

Как найти биссектрису треугольника, вписанного в другой треугольник?

В равнобедренном треугольнике ABC проведем к стороне АС сторону ВК. Этот отрезок не будет являться ни биссектрисой треугольника, ни его медианой. Здесь применятся формула Стюарта.

По ней вычисляется периметр треугольника – сумма длин всех его сторон. Для ABC вычисляем полупериметр. Это периметр треугольника, деленный пополам.

Р = ( АВ+ ВС+ АС)/2. По этой формуле высчитываем биссектрису, проведенную к стороне. ВК = v(4*ВС*АС*Р (Р-АВ)/ (ВС+АС).

По теореме Стюарта можно также увидеть, что биссектриса, проведенная к другой стороне треугольника, будет равна ВК, т.к. эти две стороны треугольника равны между собой.

Биссектриса прямоугольного треугольника

Для того чтобы знать, как находиться биссектриса в прямоугольном треугольнике, нужно также пользоваться формулами. Не стоит забывать, что в прямоугольном треугольнике один угол обязательно прямой, т.е. равный 90 градусам. Таким образом, если биссектриса начинается из прямого угла, даже если в услови

elhow.ru

Все формулы для треугольника

L - биссектриса, отрезок |OB|, который делит угол ABC пополам

a, b - стороны треугольника

с - сторона на которую опущена биссектриса

d, e - отрезки полученные делением биссектрисы

γ - угол ABC, разделенный биссектрисой пополам

p - полупериметр, p=(a+b+c)/2

 

 

Длина биссектрисы через две стороны и угол, (L):

Длина биссектрисы через две стороны и угол

 

Длина биссектрисы через полупериметр и стороны, (L):

Длина биссектрисы через полупериметр и стороны

 

Длина биссектрисы через три стороны, (L):

Длина биссектрисы через три стороны

 

Длина биссектрисы через стороны и отрезки d, e, (L):

Длина биссектрисы через стороны и отрезки d, e

 

 

 

Точка пересечения всех трех биссектрис треугольника ABC, совпадает с центром О, вписанной окружности.

 

 

 

 

 

 

 

 

1. Найти по формулам длину биссектрисы из прямого угла на гипотенузу:

Биссектриса прямого угла прямоугольного треугольника

 

L - биссектриса, отрезок ME ,  исходящий из прямого угла (90 град)

a, b - катеты прямоугольного треугольника

с - гипотенуза

α - угол прилежащий к гипотенузе

 

 

Формула длины биссектрисы через катеты, ( L):

Формула длины биссектрисы через катеты

 

Формула длины биссектрисы через гипотенузу и угол, ( L):

Формула длины биссектрисы через гипотенузу и угол

 

 

 

2. Найти по формулам длину биссектрисы из острого угла на катет:

 

L - биссектриса, отрезок ME ,  исходящий из острого угла

a, b - катеты прямоугольного треугольника

с - гипотенуза

α, β - углы прилежащие к гипотенузе

 

 

Формулы длины биссектрисы через катет и угол, (L):

 

Формула длины биссектрисы через катет и гипотенузу, (L):

 

Формулы для вычисления высоты, биссектрисы и медианы.

В равнобедренном треугольнике: высота, биссектриса и медиана, исходящие из угла образованного равными сторонами, один и тот же отрезок.

 

Длина биссектрисы равнобедренного треугольника

L - высота=биссектриса=медиана

a - одинаковые стороны треугольника

b - основание

α - равные углы при основании

β - угол вершины

 

 

Формулы высоты, биссектрисы и медианы, через сторону и угол, (L):

Формулы высоты, биссектрисы и медианы равнобедренного треугольника

 

Формулы высоты, биссектрисы и медианы равнобедренного треугольника

 

Формулы высоты, биссектрисы и медианы равнобедренного треугольника

 

Формула высоты, биссектрисы и медианы, через стороны, (L):

Формулы высоты, биссектрисы и медианы равнобедренного треугольника

Формула для вычисления высоты= биссектрисы= медианы.

В равностороннем треугольнике: все высоты, биссектрисы и медианы, равны. Точка их пересечения, является центром вписанной окружности.

Найти медиану=биссектрису=высоту равностороннего треугольника

 

 

L - высота=биссектриса=медиана

a -  стороны треугольника

 

 

 

Формула длины высоты, биссектрисы и медианы равностороннего треугольника, (L):

Формула длины высоты, биссектрисы и медианы равностороннего треугольника

 

 

Медиана - отрезок |AO|, который выходит из вершины A и делит противолежащею сторону  c пополам. Медиана делит треугольник ABC на два равных по площади треугольника AOC и ABO.

 

Найти длину медианы треугольника по формулам

 

M - медиана, отрезок |AO|

c - сторона на которую ложится медиана

a , b - стороны треугольника

γ - угол CAB

 

 

Формула длины медианы через три стороны, (M):

Формула длины медианы через три стороны

 

Формула длины медианы через две стороны и угол между ними, (M):

Формула длины медианы через две стороны и угол между ними

 

 

Медиана, отрезок |CO|, исходящий из вершины прямого угла BCA и делящий гипотенузу c, пополам. Медиана в прямоугольном треугольнике (M), равна, радиусу описанной окружности (R).

Длина медианы прямоугольного треугольникаM - медиана

R - радиус описанной окружности

O - центр описанной окружности

с - гипотенуза

a, b - катеты

α - острый угол CAB

 

Медиана равна радиусу и половине гипотенузы, (M):

Медиана равна радиусу и половине гипотенузы

 

Формула длины через катеты, (M):

Формула медианы через катеты

 

Формула длины через катет и острый угол, (M):

Формула медианы через катет и острый угол

 

 

Высота- перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом). Высоты треугольника пересекаются в одной точке, которая называется - ортоцентр.

 

Найти длину высоты треугольникаH - высота треугольника

a - сторона, основание

b. c - стороны

β, γ - углы при основании

p - полупериметр, p=(a+b+c)/2

R - радиус описанной окружности

S - площадь треугольника

 

 

Формула длины высоты через стороны, (H):

Формула длины высоты через стороны

 

Формула длины высоты через сторону и угол, (H):

Формула длины высоты через сторону и угол

 

Формула длины высоты через сторону и площадь, (H):

Формула длины высоты через сторону и площадь

 

Формула длины высоты через стороны и радиус, (H):

Формула длины высоты через стороны и радиус

 

 

 

В прямоугольном треугольнике катеты, являются высотами. Ортоцентр - точка пересечения высот, совпадает с вершиной прямого угла.

 

Формулы высоты прямого угла в прямоугольном треугольникеH - высота из прямого угла

a, b - катеты

с - гипотенуза

c1 , c2 - отрезки полученные от деления гипотенузы, высотой

α, β - углы при гипотенузе

 

 

Формула длины высоты через стороны, (H):

Формула длины высоты через стороны

 

Формула длины высоты через гипотенузу и острые углы, (H):

Формула длины высоты через гипотенузу и острые углы

 

Формула длины высоты через катет и угол, (H):

Формула длины высоты через катет и угол

 

Формула длины высоты через составные отрезки гипотенузы , (H):

Формула длины высоты через составные отрезки гипотенузы

 

 

Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

Как найти неизвестную сторону треугольника

 

 

a, b, c - стороны произвольного треугольника

α, β, γ - противоположные углы

 

 

 

Формула  длины через две стороны и угол (по теореме косинусов), (a):

Формула стороны треугольника по теореме косинусов

*Внимательно, при подстановке в формулу, для тупого угла ( α>90), сosα, принимает отрицательное значение

 

Формула  длины через сторону и два угла (по теореме синусов), (a):

Формула стороны по теореме синусов

 

Вычислить длину неизвестной стороны через любые стороны и углы

Формулы сторон равнобедренного треугольника

b - сторона (основание)

a - равные стороны

α - углы при основании

β - угол образованный равными сторонами

 

 

 

Формулы длины стороны (основания), (b):

Формулы длины стороны (основания), (b):

Формулы длины стороны (основания), (b):

 

Формулы длины равных сторон , (a):

Формулы длины равных сторон

Формулы длины равных сторон

 

Есть следующие формулы для определения катета или гипотенузы

Формулы для прямоугольного треугольника

 

 

a, b - катеты

c - гипотенуза

α, β - острые углы

 

 

Формулы для катета, (a):

Формулы катета прямоугольного треугольника

 

Формулы для катета, (b):

Формулы катета прямоугольного треугольника

 

Формулы для гипотенузы, (c):

Формулы гипотенузы прямоугольного треугольника

формула гипотенузы прямоугольного треугольника

 

Формулы сторон по теореме Пифагора, (c, a, b):

Формула стороны по теореме Пифагора

Формула стороны по теореме Пифагора

Формула стороны по теореме Пифагора

 

 

zdesformula.ru

Биссектрисы равнобедренного треугольника | Треугольники

Свойства биссектрис равнобедренного треугольника

I. Биссектрисы углов при основании равнобедренного треугольника (проведенные к боковым сторонам), равны.

bissektrisyi ravnobedrennogo treugolnika

 

 

Дано:

∆ ABC,

AC=BC,

AN и BM — биссектрисы.

 

 

 Доказать: AN=BM.

Доказательство:

bissektrisyi ravnyih uglov treugolnika

 

Рассмотрим треугольники ACN и BCM

(не забываем, как важно правильно назвать равные треугольники!).

1) AC=BC (по условию (как боковые стороны равнобедренного треугольника))

2) ∠C — общий

3) ∠CAN=∠CBM (как углы, на которые биссектрисы делят равные углы при основании равнобедренного   треугольника)

Следовательно, ∆ACN=∆BCM (по стороне и двум прилежащим к ней углам).

Из равенства треугольников следует равенство соответствующих сторон: AN=BM.

Что и требовалось доказать.

 

Если в треугольнике два угла раны, то этот треугольник — равнобедренный (по признаку).

Если в треугольнике две стороны равны, то этот треугольник — равнобедренный (по определению).

Отсюда вытекает, что

Биссектрисы, проведенные из равных углов треугольника, равны.

Биссектрисы, проведенные к равным сторонам треугольника, равны.

 

Замечание.

(Вместо пары треугольников ACN и BCM можно было рассмотреть треугольники ABM и BAN.

1) AB — общая сторона

2) ∠MAB=∠NBA (как углы при основании равнобедренного треугольника)

3) ∠ABM=∠BAN (как углы, образованные биссектрисами равных углов).

Следовательно, треугольники ACN и BCM равны по стороне и двум прилежащим к ней углам).

 

II. Биссектриса угла при основании равнобедренного треугольника делит боковую сторону на отрезки, пропорциональные боковой стороне и основанию.

 

bissektrisa v ravnobedrennom treugolnike

 

 

Это следует непосредственно из свойства биссектрисы треугольника.

www.treugolniki.ru

Все формулы биссектрисы в треугольнике

Найти длину биссектрисы в треугольнике

L- биссектриса, отрезок |OB|, который делит угол ABC пополам

a, b - стороны треугольника

с - сторона на которую опущена биссектриса

d, e - отрезки полученные делением биссектрисы

γ - угол ABC , разделенный биссектрисой пополам

p - полупериметр, p=(a+b+c)/2

 

Длина биссектрисы через две стороны и угол, (L):

Длина биссектрисы через две стороны и угол

 

Длина биссектрисы через полупериметр и стороны, (L):

Длина биссектрисы через полупериметр и стороны

 

 

Длина биссектрисы через три стороны, (L):

Длина биссектрисы через три стороны

 

Длина биссектрисы через стороны и отрезки d, e, (L):

Длина биссектрисы через стороны и отрезки d, e

 

 

Точка пересечения всех трех биссектрис треугольника ABC, совпадает с центром О

 

Точка пересечения всех трех биссектрис треугольника ABC, совпадает с центром О, вписанной окружности.

Подробности Автор: Administrator Опубликовано: 06 октября 2011 Обновлено: 16 мая 2017

www-formula.ru

Все формулы высоты, медианы, биссектрисы равнобедренного треугольника

Формулы для вычисления высоты, биссектрисы и медианы.

В равнобедренном треугольнике: высота, биссектриса и медиана, исходящие из угла образованного равными сторонами, один и тот же отрезок.

 

Длина биссектрисы равнобедренного треугольника

L - высота = биссектриса = медиана

a - одинаковые стороны треугольника

b - основание

α - равные углы при основании

β - угол образованный равными сторонами

 

Формулы высоты, биссектрисы и медианы, через сторону и угол, (L):

Формулы высоты, биссектрисы и медианы равнобедренного треугольника

 

 

Формулы высоты, биссектрисы и медианы равнобедренного треугольника

 

Формулы высоты, биссектрисы и медианы равнобедренного треугольника

 

Формула высоты, биссектрисы и медианы, через стороны, (L):

Формулы высоты, биссектрисы и медианы равнобедренного треугольника

 

Подробности Автор: Administrator Опубликовано: 07 октября 2011 Обновлено: 16 мая 2017

www-formula.ru

Как найти длину биссектрисы в треугольнике

Как найти биссектрису треугольника?

Одной из основ геометрии является нахождение биссектрисы, луча, делящего угол пополам. Биссектриса треугольника представляет собой часть биссектрисы любого угла. Это отрезок от вершины угла до пересечения с противоположной стороной треугольника.

Если вывести биссектрисы из всех углов, то они пересекутся в одной точке, которая называется центр вписанного треугольника.

Вычислить биссектрису можно, если знать длину стороны, которую она делит пополам, или же величины углов треугольника.

Биссектриса равнобедренного треугольника

Поскольку в равнобедренном треугольнике две стороны равны друг другу, то и биссектрисы прилегающих углов будут равными. Т.к. углы треугольника также равны.

При проведении биссектрисы из одного из углов, она будет считаться высотой данного треугольника и его медианой.

Задачи, как найти биссектрису треугольника, решаются с применением формул.

Для решения данных формул в условии должны быть обозначены значения длин сторон, или величин углов треугольника. Зная их, можно вычислить биссектрису по косинусам, либо по периметру.

Например, берем равнобедренный треугольник ABC и проводим биссектрису AE к основанию BC. Полученный треугольник AEB – прямоугольный. Биссектриса – это его высота, сторона AB – гипотенуза прямоугольного треугольника, а BE и AE – катеты.

Применяется теорема Пифагора – квадрат гипотенузы равен сумме квадратов катетов. Исходя из нее BE = v (AB — AE). Поскольку AE – это медиана треугольника ABC, то катет BE = BC/2. Таким образом, BE = v (AB — (BC /4)).

В случае, если задан угол основания ABC, то биссектриса треугольника AEB, AE = AB/sin(ABC). Угол основания AEB, BAE = BAC/2. Поэтому биссектриса AE = AB/cos (BAC/2).

Как найти биссектрису треугольника, вписанного в другой треугольник?

В равнобедренном треугольнике ABC проведем к стороне АС сторону ВК. Этот отрезок не будет являться ни биссектрисой треугольника, ни его медианой. Здесь применятся формула Стюарта.

По ней вычисляется периметр треугольника – сумма длин всех его сторон. Для ABC вычисляем полупериметр. Это периметр треугольника, деленный пополам.

Р = ( АВ+ ВС+ АС)/2. По этой формуле высчитываем биссектрису, проведенную к стороне. ВК = v(4*ВС*АС*Р (Р-АВ)/ (ВС+АС).

По теореме Стюарта можно также увидеть, что биссектриса, проведенная к другой стороне треугольника, будет равна ВК, т.к. эти две стороны треугольника равны между собой.

Биссектриса прямоугольного треугольника

Для того чтобы знать, как находиться биссектриса в прямоугольном треугольнике, нужно также пользоваться формулами. Не стоит забывать, что в прямоугольном треугольнике один угол обязательно прямой, т.е. равный 90 градусам. Таким образом, если биссектриса начинается из прямого угла, даже если в условии не будет указан синус или косинус угла, можно их узнать по величине угла.

  • Находится биссектриса по формуле Стюарта. Если имеется треугольник АВК, и его полупериметр высчитывается, как Р = ( АВ+ ВК+ АК)/2. Исходя из полученного, высчитываем биссектрису АЕ = v(4*ВК*АК*Р (Р-АВ)/ (ВК+АК).
  • Длина биссектрисы определяется еще таким образом. АЕ = v (ВК*АК) – (ЕВ*ЕК), где ЕВ и ЕК – отрезки, на которые биссектриса АЕ делит сторону ВК.
  • Либо можно воспользоваться косинусами углов прямоугольного треугольника, если они известны. Биссектриса будет равна (2*аb*(cos c/2))/(a+b).
  • Либо находить биссектрису так. По формуле (cos а) – (cos b)/2, найдите необходимый в дальнейшем делитель. Далее высота, проведенная к стороне с, делится на полученное значение. Для получения косинусов нужно знать величину углов. Либо вычислить их, исходя из величины единственно известного угла – прямого, в 90 градусов.

Равносторонний треугольник

В таком треугольнике все стороны равны между собой, соответственно и углы. Поэтому все биссектрисы и медианы также будут равными. Если некоторые значения сторон будут неизвестными, то нужным будет значение одной стороны. Т.к. стороны равны. И величины углов также. Поэтому для нахождения биссектрисы по формуле косинусов, нужно знать либо вычислить значение лишь одного из углов.

Длина медианы и биссектриса треугольника равна — L.

Стороны треугольника равны — а.

L = (аv3)/2.

В треугольнике АВС, биссектриса АЕ = (АВСv3)/2.

По этой же формуле вычисляются высота и медиана равностороннего треугольника.

Разносторонний треугольник

В таком треугольнике все стороны имеют разные значения, поэтому и биссектрисы не равны между собой.

Берется треугольник с произвольными значениями сторон. Если некоторые значения сторон неизвестны, то они вычисляются по формуле периметра треугольника.

После того, как биссектрисы углов будут проведены, стоит прибавить к их обозначениям нижний индекс1. Отрезки, на которые биссектриса делит противоположную сторону, обозначаются также с нижним индексом 1.

Длины этих отрезков вычисляются по теореме синусов.

Длина же биссектрисы вычисляется как L = v аb – а1b1, где аb – прилежащие к отрезкам стороны, а а1b1 – произведение отрезков. Формула применяется ко всем сторонам разностороннего треугольника. Главное, это знать длины сторон, либо вычислить их, зная величины прилегающих к ним углов.

Источник: https://elhow.ru/ucheba/geometrija/planimetrija/kak-najti-bissektrisu-treugolnika

Вычисление биссектрисы треугольника с известными свойствами

Главная > Наука > Вычисление биссектрисы треугольника с известными свойствами

Математика, как известно, — царица наук. Неслучайно это выражение так любят учителя, особенно старой формации.

Математика открывается исключительно тем, кто умеет, во-первых, логически мыслить, а во-вторых, тем, кто любит всегда добиваться ответа, оперируя изначальными условиями, не жульничая, а основывая решения на анализе, построение опять-таки логических связей.

Эти качества, вынесенные со школьной скамьи, способны модулироваться и к взрослой серьезной жизни как в рабочих, так и в иных сложных моментах.

Сегодня многие сталкиваются с проблемами при решении математических задач еще в начальной школе.

Однако даже те школьники, которые успешно осваивают первичную математическую программу, переходя на новый школьный и жизненный этап, где алгебра отделяется от геометрии, бывает, сталкиваются с серьезными затруднениями.

Между тем, один раз выучив и, главное, поняв, как найти биссектрису треугольника, ученик навсегда запомнит эту формулу. Рассмотрим треугольник ABC с тремя проведенными биссектрисами.

Как видно из рисунка, все они сходятся в одной точке.

Во-первых, определим, что биссектриса треугольника, и это одно из важнейших ее свойств, делит угол, из которого такой отрезок исходит, пополам. То есть в приведенном примере угол BAD равен углу DAC.

Свойства

  1. Биссектриса треугольника разделяет сторону, к которой она проведена на два отрезка, обладающие свойствами пропорциональности к сторонам, которые прилегают к каждому отрезку, соответственно.

    Таким образом, BD/CD = AB/AC.

  2. Каждый треугольник способен обладать тремя данными отрезками. Другие значимые свойства касаются как частных, так и общих случаев конкретных рассматриваемых треугольников.

Свойства в равнобедренных треугольниках

  1. Первое свойство биссектрис равнобедренного треугольника формулируется в том, что равенство двух биссектрис свидетельствует о равнобедренности этого треугольника. Третья же его биссектриса — медиана, а также высота его угла.
  2. Разумеется, что будет верным и обратное свойство.

    То есть в равнобедренном треугольнике неизменно наблюдается равенство двух его биссектрис.

  3. Из сказанного ранее вытекает вывод о том, что биссектриса, исходящая из противоположного основанию, служит также медианой и высотой.
  4. Все биссектрисы равностороннего треугольника обладают равенством.

Определение биссектрисы треугольника

Допустим, что в рассматриваемом треугольнике ABC сторона AB = 5 cm, AC = 4 cm. Отрезок CD = 3 cm.

Определение длины

Определить длину можно по следующей формуле. AD = квадратный корень из разности произведения сторон и произведения пропорциональный отрезков.

Найдем длину стороны BC.

  • Из свойств известно, что BD/CD = AB/AC.
  • Значит, BD/CD = 5/4 = 1,25.
  • BD/3 = 5/4.
  • Значит, BD = 3,75.
  • ABxAC = 5×4=20.
  • CDxBD = 3×3,75 = 11,25.

Так, для того чтобы рассчитать длину, требуется вычесть из 20 11,25 и извлечь квадратный корень из получившегося 8,75. Результат с учетом тысячных долей получится 2,958.

Данный пример призван также эксплицитно указать на ситуацию, когда значения длины биссектрисы, как и все другие значения в математике, будут выражены не в натуральных числах, однако бояться этого не стоит.

Нахождение величины угла

Для нахождения углов, образующихся биссектрисой, важно, прежде всего, помнить о сумме углов, неизменно составляющей 180 градусов. Предположим, что угол ABC равен 70 градусам, а угол BCA — 50 градусам. Значит, путем простейших вычислений получим, что CAB = 180 — (70+50) = 60 градусов.

Если использовать главное свойство, в соответствии с которым угол, из которого она исходит, делится пополам, получим равные значения углов BAD и CAD, каждый из которых будет 60/2 = 30 градусов.

Если требуется дополнительный наглядный пример, рассмотрим ситуацию, когда известен лишь угол BAD равный 28 градусам, а также угол ABC равный 70 градусам. Используя свойство биссектрисы, сразу найдем угол CAB путем умножения значения угла BAD на два. CAB = 28×2 =56. Значит, BAC = 180 — (70+56) или 180 — (70+28×2)= 180 — 126 = 54 градуса.

Специально не рассматривалась ситуация, когда данный отрезок выступает в качестве медианы или высоты, оставив для этого другие специализированные статьи.

Таким образом, мы рассмотрели такое понятие, как биссектриса треугольника, формула для нахождения длины и углов которой заложена и реализована в приведенных примерах, имеющих целью наглядно показать, каким образом можно использовать для решения тех или иных задач в геометрии. Также к данной теме относятся такие понятия, как медиана и высота. Если данный вопрос прояснился, следует обращаться к дальнейшему изучению различных других свойств треугольника, без которых немыслимо дальнейшее изучение геометрии.

Биссектриса треугольника

Источник: https://obrazovanie.guru/nauka/vychislenie-bissektrisy-treugolnika-s-izvestnymi-svojstvami.html

Как найти биссектрису треугольника?

Как найти биссектрису треугольника?

  • Биссектриса, как известно, бегает по углам и грызет угол пополам.Если есть транспортир, найти биссектрису треугольника достаточно просто: сначала определяем величину угла треугольника, затем делим эту величину пополам, и проводим прямую, служащую стороной найденного угла.Если есть только циркуль, а нужно найти биссектрису треугольника, то нужно провести из вершины угла окружность, пересекающую стороны угла, затем провести из точек пересечения еще две окружности. Прямая, проходящая через две точки пересечения этих окружностей, и будет биссектрисой треугольника.
  • Если известны длины сторон треугольника назовем их а,б,с , и сторону с биссектриса делит пополам , то по формуле . Стороnу с делим на две части назовем их условно отрезки с1 и с2 и получается биссектриса равна корень а*б — с1*с2… Надеюсь понятно , давненько я в школе училась …

  • Биссектрису любого угла равностороннего треугольника найти просто — это перпендикуляр на противоположную углу сторону, то есть совпадает с высотой. В равнобедренном треугольнике такой метод тоже сработает, но только для одного угла, между равными сторонами.

    Для произвольного же треугольника графически найти биссектрису можно по методу Матвея с помощью циркуля. В задачах на решение треугольников биссектриса часто используется, вернее используется то, что угол она делит пополам.

    Причем есть свойство, согласно которому биссектриса делит сторону треугольника пропорционально другим сторонам треугольника:

    Так что если известны стороны треугольника и углы, то длину биссектрисы легко найти по теореме синусов:

  • Источник: http://info-4all.ru/drugoe/kak-najti-bissektrisu-treugolnika/

    Что такое биссектриса треугольника: свойства, связанные с отношением сторон

    Биссектриса треугольника – распространенное геометрическое понятие, которое не вызывает особых затруднений в изучении. Владея знаниями о ее свойствах, с решением многих задач можно справиться без особого труда. Что такое биссектриса? Постараемся ознакомить читателя со всеми секретами этой математической прямой.

    Суть понятия

    Наименование понятия пошло от использования слов на латыни, значение которых заключается «би» — две, «сектио» — разрезать. Они конкретно указывают на геометрический смысл понятия – разбивание пространства между лучами на две равные части.

    Биссектриса треугольника – отрезок, который берет начало из вершины фигуры, а другой конец размещен на стороне, которая расположена напротив него, при этом делит пространство на две одинаковые части.

    Многие педагоги для быстрого ассоциативного запоминания учащимися математических понятий пользуются разной терминологией, которая отображена в стихах или ассоциациях. Конечно, использовать такое определение рекомендуется для детей старшего возраста.

    Как обозначается эта прямая? Здесь опираемся на правила обозначения отрезков или лучей. Если речь идет об обозначении биссектрисы угла треугольной фигуры, то обычно ее записывают как отрезок, концы которого являются вершиной и точкой пересечения с противоположной вершине стороной. Причем начало обозначения записывается именно из вершины.

    Внимание! Сколько биссектрис имеет треугольник? Ответ очевиден: столько же, сколько вершин, – три.

    Свойства

    Кроме определения, в школьном учебнике можно найти не так уж много свойств данного геометрического понятия. Первое свойство биссектрисы треугольника, с которым знакомят школьников, – центр вписанной окружности, а второе, напрямую связанное с ним, – пропорциональность отрезков. Суть заключается в следующем:

    1. Какая бы ни была делящая прямая, на ней расположены точки, которые находятся на одинаковом расстоянии от сторон, которые составляют пространство между лучами.
    2. Для того чтобы вписать в треугольную фигуру окружность, необходимо определить точку, в которой будут пересекаться эти отрезки. Это и есть центральная точка окружности.
    3. Части стороны треугольной геометрической фигуры, на которые разбивает ее делящая прямая, находятся в пропорциональной зависимости от образующих угол сторон.

    Постараемся привести в систему остальные особенности и представить дополнительные факты, которые помогут глубже познать достоинства этого геометрического понятия.

    Длина

    Одним из видов задач, которые вызывают затруднение у школьников, является нахождение длины биссектрисы угла треугольника. Первый вариант, в котором находится ее длина, содержит такие данные:

    • величина пространства между лучами, из вершины которого выходит данный отрезок;
    • длины сторон, которые образуют этот угол.

    Для решения поставленной задачи используется формула, смысл которой заключается в нахождении отношения увеличенного в 2 раза произведения значений сторон, составляющих угол, на косинус его половины к сумме сторон.

    Рассмотрим на определенном примере. Допустим, дана фигура АВС, в которой отрезок проведен из угла А и пересекает сторону ВС в точке К. Значение А обозначим Y. Исходя из этого, АК = (2*АВ*АС*cos(Y/2))/(АВ+АС).

    Второй вариант задачи, в котором определяется длина биссектрисы треугольника, содержит такие данные:

    • известны значения всех сторон фигуры.

    При решении задачи такого типа первоначально определяем полупериметр. Для этого необходимо сложить значения всех сторон и разделить пополам: р=(АВ+ВС+АС)/2. Далее применяем вычислительную формулу, с помощью которой определялась длина данного отрезка в предыдущей задаче.

    Необходимо только внести некоторые изменения в суть формулы в соответствии с новыми параметрами.

    Итак, необходимо найти отношение увеличенного в два раза корня второй степени из произведения длин сторон, которые прилегают к вершине, на полупериметр и на разность полупериметра и длины противолежащей ему стороны к сумме сторон, составляющих угол. То есть АК=(2٦АВ*АС*р*(р-ВС))/(АВ+АС).

    Внимание! Чтобы легче освоить материал, можно обратиться к имеющимся в Интернете шуточным сказкам, повествующим о «приключениях» этой прямой.

    Частные случаи

    Биссектриса прямоугольного треугольника имеет все общие свойства. Но следует отметить частный случай, который присущ только ей: при пересечении отрезков, основания которых являются вершинами острых углов прямоугольного треугольника, между лучами получается 45 град.

    Биссектриса равнобедренного треугольника также имеет свои особенности:

    • Если основание этого отрезка – вершина, противолежащая основанию, то она является и высотой, и медианой.
    • Если отрезки проведены из вершин углов при основании, то их длины равны между собой.

    Урок геометрии, изучаем свойства биссектрисы

     

    Свойства биссектрисы треугольника

    Источник: https://uchim.guru/matematika/bissektrisa-treugolnika-svojstva.html

    Формулы для треугольника, как найти сторону, биссектрису, медиану, высоту, угол

    Формулы для треугольника, как найти сторону, биссектрису, медиану, высоту, угол…

    Найти длину биссектрисы в треугольнике

    L — биссектриса, отрезок |OB|, который делит угол ABC пополам

    a, b — стороны треугольника

    с — сторона на которую опущена биссектриса

    d, e — отрезки полученные делением биссектрисы

    γ — угол ABC, разделенный биссектрисой пополам

    p — полупериметр, p=(a+b+c)/2

    Длина биссектрисы через две стороны и угол, (L):

    Длина биссектрисы через полупериметр и стороны, (L):

    Длина биссектрисы через три стороны, (L):

    Длина биссектрисы через стороны и отрезки d, e, (L):

    Точка пересечения всех трех биссектрис треугольника ABC, совпадает с центром О, вписанной окружности.

    Биссектриса прямоугольного треугольника

    1. Найти по формулам длину биссектрисы из прямого угла на гипотенузу:

    L — биссектриса, отрезок ME ,  исходящий из прямого угла (90 град)

    a, b — катеты прямоугольного треугольника

    с — гипотенуза

    α — угол прилежащий к гипотенузе

    Формула длины биссектрисы через катеты, ( L):

    Формула длины биссектрисы через гипотенузу и угол, ( L):

    2. Найти по формулам длину биссектрисы из острого угла на катет:

    L — биссектриса, отрезок ME ,  исходящий из острого угла

    a, b — катеты прямоугольного треугольника

    с — гипотенуза

    α, β — углы прилежащие к гипотенузе

    Формулы длины биссектрисы через катет и угол, (L):

    Формула длины биссектрисы через катет и гипотенузу, (L):

    Длина биссектрисы равнобедренного треугольника

    Формулы для вычисления высоты, биссектрисы и медианы.

    В равнобедренном треугольнике: высота, биссектриса и медиана, исходящие из угла образованного равными сторонами, один и тот же отрезок.

    L — высота=биссектриса=медиана

    a — одинаковые стороны треугольника

    b — основание

    α — равные углы при основании

    β — угол вершины

    Формулы высоты, биссектрисы и медианы, через сторону и угол, (L):

    Формула высоты, биссектрисы и медианы, через стороны, (L):

    Найти медиану=биссектрису=высоту равностороннего треугольника

    Формула для вычисления высоты= биссектрисы= медианы.

    В равностороннем треугольнике: все высоты, биссектрисы и медианы, равны. Точка их пересечения, является центром вписанной окружности.

    L — высота=биссектриса=медиана

    a —  стороны треугольника

    Формула длины высоты, биссектрисы и медианы равностороннего треугольника, (L):

    Найти длину медианы треугольника по формулам

    Медиана — отрезок |AO|, который выходит из вершины A и делит противолежащею сторону  c пополам. Медиана делит треугольник ABC на два равных по площади треугольника AOC и ABO.

    M — медиана, отрезок |AO|

    c — сторона на которую ложится медиана

    a , b — стороны треугольника

    γ — угол CAB

    Формула длины медианы через три стороны, (M):

    Формула длины медианы через две стороны и угол между ними, (M):

    Длина медианы прямоугольного треугольника

    Медиана, отрезок |CO|, исходящий из вершины прямого угла BCA и делящий гипотенузу c, пополам. Медиана в прямоугольном треугольнике (M), равна, радиусу описанной окружности (R).

    M — медиана

    R — радиус описанной окружности

    O — центр описанной окружности

    с — гипотенуза

    a, b — катеты

    α — острый угол CAB

    Медиана равна радиусу и половине гипотенузы, (M):

    Формула длины через катеты, (M):

    Формула длины через катет и острый угол, (M):

    Найти длину высоты треугольника

    Высота— перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом). Высоты треугольника пересекаются в одной точке, которая называется — ортоцентр.

    H — высота треугольника

    a — сторона, основание

    b. c — стороны

    β, γ — углы при основании

    p — полупериметр, p=(a+b+c)/2

    R — радиус описанной окружности

    S — площадь треугольника

    Формула длины высоты через стороны, (H):

    Формула длины высоты через сторону и угол, (H):

    Формула длины высоты через сторону и площадь, (H):

    Формула длины высоты через стороны и радиус, (H):

    Формулы высоты прямого угла в прямоугольном треугольнике

    В прямоугольном треугольнике катеты, являются высотами. Ортоцентр — точка пересечения высот, совпадает с вершиной прямого угла.

    H — высота из прямого угла

    a, b — катеты

    с — гипотенуза

    c1 , c2 — отрезки полученные от деления гипотенузы, высотой

    α, β — углы при гипотенузе

    Формула длины высоты через стороны, (H):

    Формула длины высоты через гипотенузу и острые углы, (H):

    Формула длины высоты через катет и угол, (H):

    Формула длины высоты через составные отрезки гипотенузы , (H):

    Как найти неизвестную сторону треугольника

    Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

    a, b, c — стороны произвольного треугольника

    α, β, γ — противоположные углы

    Формула  длины через две стороны и угол (по теореме косинусов), (a):

    *Внимательно, при подстановке в формулу, для тупого угла ( α>90),сosα, принимает отрицательное значение

    Формула  длины через сторону и два угла (по теореме синусов), (a):

    Формулы сторон равнобедренного треугольника

    Вычислить длину неизвестной стороны через любые стороны и углы

    b — сторона (основание)

    a — равные стороны

    α — углы при основании

    β — угол образованный равными сторонами

    Формулы длины стороны (основания), (b):

    Формулы длины равных сторон , (a):

    Как узнать сторону прямоугольного треугольника

    Есть следующие формулы для определения катета или гипотенузы

    a, b — катеты

    c — гипотенуза

    α, β — острые углы

    Формулы для катета, (a):

    Формулы для катета, (b):

    Формулы для гипотенузы, (c):

    Формулы сторон по теореме Пифагора, (c, a, b):

    Источник: http://ifreestore.net/2774/

    Совет 1: Как найти длину биссектрисы в треугольнике

    После этого часть формулы длины биссектрисы (L) из предыдущего шага надо будет заменить — в числитель дроби поставьте удвоенный квадратный корень из произведения длин сторон, образующих разделенный биссектрисой угол, на полупериметр и частное от вычитания из полупериметра длины третьей стороны.

    Для этого найдите значение удвоенного произведения длин сторон на косинус половины угла между ними и разделите полученный результат на сумму длин сторон: L=2*a*b*cos(?/2)/(a+b).

    2Если величина угла, который делится биссектрисой, неизвестна, но даны длины всех сторон треугольника (a, b и c), то для вычислений удобнее ввести дополнительную переменную — полупериметр: p=?*(a+b+c).

    Для этого оставьте знаменатель (сумма длин сторон разделенного угла) без изменений, а в числителе должен быть квадратный корень из произведения длин этих же сторон на сумму их длин, из которой вычтена длина третьей стороны, а также на сумму длин всех трех сторон: L=v(a*b*(a+b-c)*(a+b+c))/(a+b).

    4Если в исходных условиях даны не только длины сторон (a и b), образующих разделенный биссектрисой угол, но и длины отрезков (d и e), на которые эта биссектриса поделила третью сторону, то тоже придется извлекать квадратный корень. В результате формула должна выглядеть так: L=2*v(a*b*p*(p-c))/(a+b).

    3Если усложнить подкоренное выражение формулы из предыдущего шага, то можно обойтись и без полупериметра. Знаменатель же оставьте без изменений — это должна быть сумма длин сторон разделенного угла треугольника. Длину биссектрисы (L) в этом случае рассчитывайте как корень из произведения длин известных сторон, из которого вычтено произведение длин отрезков: L=v(a*b-d*e). Инструкция1Если вам известны длины сторон (a и b) треугольника, образующие разделенный пополам угол (?), то длину биссектрисы (L) можно вывести из теоремы косинусов.

    Еще по теме

    Как ведут себя ревнивцы

    Ревность — это не самое лучшее качество человека. От него страдает и ревнивец, и тот, к кому ревнуют….

    Как справиться с изменой мужа

    Инструкция1Сначала сядьте и успокойтесь. От того, что вы будете устраивать истерику и скандалить – лучше не будет, таким образом вы только усугубите положение. Подумайте,…

    Как отменить услугу Погода

    Инструкция1Оператор МТС — один из тех, кто предоставляет своим абонентам услугу под названием «Прогноз погоды». Кроме того…

    Источник: http://www.oootemp.ru/nauka/13210_sovet-1-kak-nayti-dlinu-bissektrisi-v-treugolnike.php

    __________________________________________

    novpedkolledg2.ru

    Как находить высоту в равнобедренном треугольнике? Формула нахождения, свойства высоты в равнобедренном треугольнике

    Геометрия – это не только предмет в школе, по которому нужно получить отличную оценку. Это еще и знания, которые часто требуются в жизни. Например, при строительстве дома с высокой крышей необходимо рассчитать толщину бревен и их количество. Это несложно, если знать, как находить высоту в равнобедренном треугольнике. Архитектурные сооружения базируются на знании свойств геометрических фигур. Формы зданий зачастую визуально напоминают их. Египетские пирамиды, пакеты с молоком, художественная вышивка, северные росписи и даже пирожки – это все треугольники, окружающие человека. Как говорил Платон, весь мир базируется на треугольниках.

    как находить высоту в равнобедренном треугольнике

    Равнобедренный треугольник

    Чтобы было понятнее, о чем далее пойдет речь, стоит немного вспомнить азы геометрии.

    Треугольник является равнобедренным, если он имеет две равных стороны. Их всегда называют боковыми. Сторона, размеры которой отличаются, получила название основания.

    Основные понятия

    Как и любая наука, геометрия имеет свои основные правила и понятия. Их достаточно много. Рассмотрим лишь те, без которых наша тема будет несколько непонятна.

    Высота – это прямая линия, проведенная перпендикулярно к противоположной стороне.

    Медиана – это отрезок, направленный из любой вершины треугольника исключительно к середине противоположной стороны.

    Биссектриса угла – это луч, разделяющий угол пополам.

    Биссектриса треугольника – это прямая, вернее, отрезок биссектрисы угла, соединяющий вершину с противоположной стороной.

    Очень важно запомнить, что биссектриса угла – это обязательно луч, а биссектриса треугольника – это часть такого луча.

    Углы при основании

    Теорема гласит, что углы, расположенные при основании любого равнобедренного треугольника, всегда равны. Доказать эту теорему очень просто. Рассмотрим изображенный равнобедренный треугольник АВС, у которого АВ=ВС. Из угла АВС необходимо провести биссектрису ВД. Теперь следует рассмотреть два полученных треугольника. По условию АВ=ВС, сторона ВД у треугольников общая, а углы АВД и СВД равны, ведь ВД – биссектриса. Вспомнив первый признак равенства, можно смело заключить, что рассматриваемые треугольники равны. А следовательно, равны все соответствующие углы. И, конечно, стороны, но к этому моменту вернемся позже.

    высота в равнобедренном треугольнике формула

    Высота равнобедренного треугольника

    Основная теорема, на которой базируется решение практически всех задач, звучит так: высота в равнобедренном треугольнике является биссектрисой и медианой. Чтобы понять её практический смысл (или суть), следует сделать вспомогательное пособие. Для этого необходимо вырезать из бумаги равнобедренный треугольник. Легче всего это сделать из обычного тетрадного листка в клеточку.

    высота в равнобедренном треугольнике является биссектрисой и медианой

    Согните полученный треугольник пополам, совместив боковые стороны. Что получилось? Два равных треугольника. Теперь следует проверить догадки. Разверните полученное оригами. Прочертите линию сгиба. При помощи транспортира проверьте угол между прочерченной линией и основанием треугольника. О чем говорит угол в 90 градусов? О том, что прочерченная линия – перпендикуляр. По определению – высота. Как находить высоту в равнобедренном треугольнике, мы разобрались. Теперь займемся углами при вершине. При помощи того же транспортира проверьте углы, образованные теперь уже высотой. Они равны. Значит, высота одновременно является и биссектрисой. Вооружившись линейкой, измерьте отрезки, на которые разбивает высота основание. Они равны. Следовательно, высота в равнобедренном треугольнике делит основание пополам и является медианой.

    Доказательство теоремы

    Наглядное пособие ярко демонстрирует истинность теоремы. Но геометрия – наука достаточно точная, поэтому требует доказательств.

    Во время рассмотрения равенства углов при основании было доказано равенство треугольников. Напомним, ВД – биссектриса, а треугольники АВД и СВД равны. Вывод был таков: соответствующие стороны треугольника и, естественно, углы равны. Значит, АД = СД. Следовательно, ВД – медиана. Осталось доказать, что ВД является высотой. Исходя из равенства рассматриваемых треугольников, получается, что угол АДВ равен углу СДВ. Но эти два угла являются смежными, и, как известно, дают в сумме 180 градусов. Следовательно, чему они равны? Конечно, 90 градусам. Таким образом, ВД – это высота в равнобедренном треугольнике, проведенная к основанию. Что и требовалось доказать.

    высота в равнобедренном треугольнике равна

    Основные признаки

    • Чтобы успешно решать задачи, следует запомнить основные признаки равнобедренных треугольников. Они как бы обратны теоремам.
    • Если в ходе решения задачи обнаруживается равенство двух углов, значит, вы имеете дело с равнобедренным треугольником.
    • Если удалось доказать, что медиана является одновременно и высотой треугольника, смело заключайте – треугольник равнобедренный.
    • Если биссектриса является и высотой, то, опираясь на основные признаки, треугольник относят к равнобедренным.
    • И, конечно, если медиана выступает и в роли высоты, то такой треугольник - равнобедренный.

    Формула высоты 1

    Однако для большинства задач требуется найти арифметическую величину высоты. Именно поэтому рассмотрим, как находить высоту в равнобедренном треугольнике.

    Вернемся к представленной выше фигуре АВС, у которой а – боковые стороны, в - основание. ВД – высота этого треугольника, она имеет обозначение h.

    высота в равнобедренном треугольнике проведенная к основанию

    Что представляет собой треугольник АВД? Так как ВД – высота, то треугольник АВД – прямоугольный, катет которого необходимо найти. Воспользовавшись формулой Пифагора, получаем:

    АВ² = АД² + ВД²

    Определив из выражения ВД и подставив принятые ранее обозначения, получим:

    Н² = а² – (в/2)².

    Необходимо извлечь корень:

    Н = √а² – в²/4.

    Если вынести из под знака корня ¼ , то формула будет иметь вид:

    Н = ½ √4а² – в².

    Так находится высота в равнобедренном треугольнике. Формула вытекает из теоремы Пифагора. Даже если забыть эту символическую запись, то, зная метод нахождения, всегда можно её вывести.

    Формула высоты 2

    Формула, описанная выше, является основной и чаще всего используется при решении большинства геометрических задач. Но она не единственная. Иногда в условии, вместо основания, дано значение угла. При таких данных как находить высоту в равнобедренном треугольнике? Для решения подобных задач целесообразно использовать другую формулу:

    Н = а/sin α,

    где Н – высота, направленная к основанию,

    а – боковая сторона,

    α – угол при основании.

    Если в задаче дано значение угла при вершине, то высота в равнобедренном треугольнике находится следующим образом:

    Н = а/cos (β/2),

    где Н – высота, опущенная на основание,,

    β – угол при вершине,

    а – боковая сторона.

    Прямоугольный равнобедренный треугольник

    Очень интересным свойством обладает треугольник, вершина которого равна 90 градусам. Рассмотрим прямоугольный треугольник АВС. Как и в предыдущих случаях, ВД – высота, направленная к основанию.

    высота в равнобедренном треугольнике делит основание пополам

    Углы при основании равны. Вычислить их большого труда не составит:

    α = (180 – 90)/2.

    Таким образом, углы, находящиеся при основании, всегда по 45 градусов. Теперь рассмотрим треугольник АДВ. Он также является прямоугольным. Найдем угол АВД. Путем несложных вычислений получаем 45 градусов. А, следовательно, этот треугольник не только прямоугольный, но и равнобедренный. Стороны АД и ВД являются боковыми сторонами и равны между собой.

    Но сторона АД в то же время является половиной стороны АС. Получается, что высота в равнобедренном треугольнике равна половине основания, а если записать в виде формулы, то получим следующее выражение:

    Н = в/2.

    Следует не забывать, что данная формула является исключительно частным случаем, и может быть использована только для прямоугольных равнобедренных треугольников.

    высота в равнобедренном треугольнике равна половине основания

    Золотые треугольники

    Очень интересным является золотой треугольник. В этой фигуре отношение боковой стороны к основанию равняется величине, названной числом Фидия. Угол, расположенный при вершине - 36 градусов, при основании – 72 градуса. Этим треугольником восхищались пифагорейцы. Принципы золотого треугольника положены в основу множества бессмертных шедевров. Известная всем пятиконечная звезда построена на пересечении равнобедренных треугольников. Для многих творений Леонардо да Винчи использовал принцип «золотого треугольника». Композиция «Джоконды» основана как раз на фигурах, которые создают собой правильный звездчатый пятиугольник.

    Картина «Кубизм», одно из творений Пабло Пикассо, завораживает взгляд положенными в основу равнобедренными треугольниками.

    fb.ru