Тепловизор военный: виды, назначение и принцип работы. Что такое тепловизор и как он работает


Что такое тепловизор? Описание технологии

Что такое тепловизор? В основе данного оборудования лежит технология тепловой визуализации. Тепловое изображение — это метод улучшения видимости объектов в темной среде путем обнаружения инфракрасного излучения и создания изображения на основе этой информации.

Наиболее часто используемые технологии ночного видения:

  • тепловое изображение;

  • ближняя инфракрасная подсветка;

  • малошумящая визуализация.

В отличие от других двух методов, тепловидение работает в средах без какого-либо внешнего освещения. Подобно ближнему инфракрасному освещению, тепловидение может проникать в обскуранты, такие как дым и туман.тепловизор что такое

Что такое тепловизор? Описание технологии

Краткое объяснение того, как работает тепловидение: все объекты излучают инфракрасную энергию (тепло) в зависимости от их температуры. Инфракрасная энергия, излучаемая объектом, известна как тепловая идентификация. Чем жарче объект, тем больше излучения он генерирует. Тепловизор (также известный как тепловая камера) является датчиком тепла, который способен обнаруживать незначительные различия в температуре. Устройство собирает инфракрасное излучение объектов и создает электронное изображение на основе информации о различиях их температурного режима.

Термальные изображения обычно имеют различные оттенки в природе: черные объекты — холодные, белые — горячие, а глубина серого указывает на различия между ними. Однако некоторые тепловизионные камеры добавляют цвета к изображениям, чтобы помочь пользователям идентифицировать объекты при разных температурах.

История

Прототипы видеокамер с тепловизором были впервые представлены в 1992 году, но подробная оценка их эффективности в реальных ситуациях не была опубликована до 2007 года. Модель, оцененная в 2007 году, весила примерно 1,5 кг, что значительно увеличивало массу шлема, на который устанавливалась камера. Современные модели гораздо легче и мобильнее своих первых прототипов.тепловизоры для охоты

Оборудование для теплового видения

Что такое тепловизор? Это тип термографической камеры, используемой при пожаротушении. Предоставляя инфракрасное излучение в качестве видимого света, такие камеры позволяют пожарным видеть участки тепла через дым, темноту или теплопроницаемые барьеры. Камеры для тепловизионных изображений обычно являются карманными, но могут быть установлены на шлеме. Они сконструированы с использованием тепло- и водонепроницаемых корпусов и прочны, чтобы противостоять опасностям, связанным с работой на площадке.

Устройство

Какова конструкция тепловизора? Камера тепловизора состоит из пяти компонентов: оптической системы, детектора, усилителя, обработки сигналов и дисплея. Специальные тепловизионные камеры, предназначенные для пожарной безопасности, включают эти компоненты в жаропрочный, прочный и водонепроницаемый корпус. Эти компоненты работают вместе, чтобы сделать тепловое инфракрасное излучение видимым в реальном времени.

На дисплее камеры отображаются инфракрасные разности выходных сигналов, поэтому два объекта с одинаковой температурой будут отображаться как один и тот же «цвет». Многие тепловизионные камеры, например, тепловизоры Pulsar Quantum, используют оттенки серого для представления объектов нормальной температуры, но выделяют опасно горячие поверхности разных цветов.

Камеры могут быть ручными или установлены на шлеме. Большинство тепловизионных камер, используемых в пожарной службе, а также тепловизоры для охоты — карманные модели. Это удобно.тепловизоры pulsar quantum

Использование тепловизоров: отзывы

Поскольку тепловизионные камеры могут «видеть» сквозь тьму или дым, они позволяют пожарным быстро находить место пожара в конструкции или видеть сигнатуру тепла визуально скрытых жертв. Они могут использоваться для поиска жертв на открытом воздухе в прохладную ночь, нахождения тлеющих пожаров внутри стены или обнаружения перегрева электрической проводки.

Отзывы пользователей содержат информацию, что в дополнение к способности видеть сквозь густой дым, тепловизионные камеры также способны видеть материалы, участвующие в спонтанном, низкоуровневом сгорании, это позволяет своевременно ликвидировать возгорание.

Технические характеристики

В качестве ключевых дифференциаторов качества для тепловизионных камер служат две характеристики: разрешение детектора и термическая чувствительность.

Как и во многих других дисплеях, разрешение описывает общее количество пикселей. Например, дисплей 160 x 120 состоит из 19 200 пикселей. Каждый отдельный пиксель имеет связанные с ним тепловые данные, поэтому большие дисплеи обеспечивают более четкое изображение.тепловизоры отзывы

Тепловая чувствительность тепловизора — что такое? Это порог разницы, которую может обнаружить датчик изображения. Например, если устройство имеет чувствительность 0,01 °, оно может различать объекты с разностью температур в сотую градуса. Также важны минимальный и максимальный температурные диапазоны.

Существуют некоторые основные ограничения тепловизоров: например, они не могут видеть сквозь стекло из-за отражающих свойств материала.

fb.ru

что за прибор, когда и как используется

Тепловизор - это современное устройство, которое может проанализировать циркуляцию воздуха в помещении, выявить щели и трещины в конструкции здания и предоставить владельцу наглядные данные проверки. Используется тепловизор для определения потери тепла в помещениях в самых разных сферах: от проверок жилого помещения до глобальных аналитических работ на промышленных предприятиях и концернах.

Наиболее часто применяемая функция тепловизора - это термограмма. При относительно доступной цене тепловизор для проверки утечки тепла позволяет провести поиск и выявить места утечки воздуха для того, чтобы определить объемы теплопотери и позволить использовать систему отопления максимально оптимизировано и экономно. В процессе проверки утечек тепла в здании тепловизор для измерения теплопотерь здания рассчитывает максимально оптимальные показатели энергозатрат, по которым в дальнейшем можно осуществить реконструкцию узлов отопления и распределить источники более компактно и оптимизировано.

Тепловизор

Важно отметить, что наиболее подходящим сезоном года для проведения тепловизионной проверки принято считать зимний или поздний осенний период, когда работает отопление и можно проводить аналитику опираясь на разницу низких температурах снаружи и показателей тепла внутри дома. С помощью тепловизора для проверки утечки тепла можно рассчитать, сколько тепла распределяется по определенным поверхностям дома, при этом учитывая влияние на них внешних факторов. Также метод термографической проверки используется в процессе строительства или ремонта помещения, реставрации.

Устройство тепловизор

Тепловизор можно назвать своеобразным сканером, который излучает инфракрасный свет и ориентируется на электромагнитную реакцию поверхностей проверяемой конструкции. В зависимости от интенсивности излучения электромагнитных лучей прибор для определения утечки тепла в доме может рассчитать максимальную температуру на той или иной поверхности.

Как устроен тепловизор? Приемник инфракрасного излучения является основной деталью тепловизора. Волны излучений, любые изменения в процессе аналитической работы помогают прибору составить график температурных перепадов и рассчитать максимально верные показатели. Так, как работает тепловизор, не способен работать ни один другой тип прибора.

Работа тепловизора

По итогам проведения аналитики и сканирования здания тепловизор создает спектрозональную картину - комплексный график циркуляции воздуха в доме, распределения теплых и холодных масс в разных его зонах и позволяет наглядно оценить уровень энергозатратности на отопление различных помещений и пристроек. Спектрозональную картину еще могут называть термограммой или тепловым отображением. В зависимости от высоты температурных показателей, но независимо от того, как работает тепловизор, цвета на картинке могут быть от темного красного до ярко-голубого или синего.

Термограмму широко применяют для аналитики домов и квартир, для анализа температурных перепадов на заводах и концернах, а также на больших промышленных предприятиях, где от утечки тепла зависит экономическая стабильность и благополучие большого количества людей.

Проблемы с отоплением дома 

Что может стать поводом для проверки здания тепловизором?

Главной причиной, из-за которой чаще всего используется прибор для определения утечки тепла, является разница в показаниях температурного режима в помещении. Наиболее подходящим сезоном для проверки отопительной системы является холодный сезон года, когда за окном минусовая температура и циркуляцию теплого воздуха в доме можно легко рассчитать и проверить. Как правильно пользоваться тепловизором? Тепловизор фиксирует показатели нагрева различных поверхностей в помещениях дома и анализирует особенности распределения тепла.

Стоит сказать, что производители современных тепловизоров непрерывно работают над модернизацией и совершенствованием устройств. Тепловизоры нового поколения способны просчитать разницу в температурных показателях до сотых единиц, что крайне необходимо в процессе проверки герметичности и прочности конструкции дома. Если вы знаете, как использовать тепловизор, то должны знать и о том, что он помогает не только проанализировать циркуляцию теплого воздуха в помещениях, но и выявить места утечки: щели в стенах, негерметичная кровля, неисправности в вентиляционной системе, проблемы с трубопроводом, негерметичность оконных систем, наличие в доме насекомых или грызунов.

Способы использования тепловизора 

Посмотрев видео как пользоваться тепловизором, вы убедитесь, что современные приборы способны проводить аналитику отопительной системы здания при разнице температур 10 градусов. В то же время более старые модели могли рассчитывать термограмму только при 20-ти градусной разнице. Данная новая способность приборов помогает ускорить процесс проверки здания и провести более эффективную работу по обнаружению и исправлению недочетов.

Позвоните сейчас и получите бесплатную консультацию специалиста

Условия для проведения тепловизионной проверки

Существует определенный набор условий как пользоваться тепловизором, в которых следует проводить проверку температурного режима в здании:
  • Любые аналитические работы и замеры тепловизором должны проводиться до восхода солнца или после его заката. В условиях нагревания воздуха разница температур может уменьшаться, что мешает эффективности работы тепловизора.
  • Как уже говорилось выше, минимальная разница между температурой в доме и на улице должна быть 10 градусов по Цельсию.
  • В процессе планирования тепловизионной проверки важно также учитывать влажность воздуха за окном и наличие ветра. Для максимально эффективной проверки сила ветра не должна составлять более 2 м/с. Воздух на улице должен быть максимально сухим.
  • Подлежащие проверке помещения стоит держать закрытыми, дабы стабилизировать температурные показатели и устранить движения тепловых масс.
Перед проверкой тепловизором также важно учитывать функциональность отопительной системы и перепады в ее мощности, если такая вероятность есть.

Дом зимой 

Какие преимущества дает использование тепловизора?

Сегодня не нужно самостоятельно искать ответ на вопрос о том, как настроить тепловизор. Ведущие специалисты проводят тепловизионную проверку на промышленных предприятиях, а также в жилых помещениях, поскольку данный вид диагностики отопительной системы помогает максимально точно рассчитать распределение тепла и устранить все возможные погрешности в процессе строительства или ремонта. Никому не нравится платить больше за выветривающееся из дома тепло. Тепловизионная проверка позволяет не только обнаружить недочеты в помещении, но и ко всему прочему фиксирует все показания в специальном документе, который в дальнейшем может использоваться в качестве доказательства при написании жалоб и исков на компанию застройщика или ЖКХ.

Термограмму можно осуществлять и снаружи помещения, что позволяет сформировать более точную картину обогрева дома и выявить наличие всех тепловых мостов и утечек. Однако в таком виде диагностики важно учитывать возможность погрешностей в показаниях, поскольку тепловые показатели наружных поверхностей можно рассчитать только специальной широкоугольной оптикой. В зависимости от характера влияния наружных температур на наружные плоскости, температурные замеры тепловизора могут быть гораздо ниже, чем они есть на самом деле.

Как работает тепловизор: аналитика внутренней части здания

Учитывая все погрешности и ошибки, которые можно допустить при анализе термограммы наружных поверхностей здания, для максимально качественной проверки все же стоит проверять циркуляцию тепла во внутренней части конструкции. Как снимать тепловизором? В данном случае на показатели прибора будут влиять на минимальное число внешних факторов и температурные показатели будут более точными и достоверными. В процессе проверки балконов, фасадов и крыш здания специалисты рекомендуют также не использовать наружный способ сканирования, а проверять аналитику изнутри. Основная причина погрешностей заключается в постоянной циркуляции воздуха снаружи, которая существует даже при абсолютном отсутствии ветра.

Чаще всего благодаря тому, как работает тепловизор, выявляется причина температурных перепадов в здании в так называемых холодных мостах. Это особые места в конструкции здания, которые обладают повышенными показатели теплоотдачи и не удерживают тепло. В помещениях с холодным мостами чаще всего наблюдается повышенная влажность воздуха, а также наличие сырости и бытового грибка. Стоит сказать, что если вовремя не устранить эту проблему и не позаботиться о правильной термоизоляции, со временем холодные мосты в доме могут привести к постепенному разрушению конструкции дома.

Основная причина появления холодных мостов заключается в некачественной штукатурке здания, когда она плохо изолирует дом от наружной влаги и холода. При этом теплый воздух также не удерживается в доме и через своеобразные “шлюзы” выветривается. Серьезную проблему такие холодные мосты могут составлять в деревянных домах, где от постоянного скапливания влаги и сырости древесина может начать разрушаться и гнить. Поиск протечек тепловизором с целью дальнейшего устранения проблемы - один из способов повысить надежность дома.

ecotestexpress.ru

Тепловизор. Инфракрасная термография. Принцип работы и устройство тепловизора.

Инфракрасная Термография

Инфракрасная  термография – это наука использования электронно - оптических устройств для регистрации и измерения излучения и сопоставления его с температурой поверхностей. Излучение – это передача тепла в виде лучистой энергии (электромагнитных волн) без промежуточной среды, используемой для передачи. Современная инфракрасная  термография использует электронно-оптические устройства для измерения потока излучения и вычисления температуры  поверхности обследуемых конструкций или оборудования.

Люди всегда могли чувствовать инфракрасное излучение. Нервные окончания человеческой кожи могут регистрировать изменения температуры величиной ±0,009°C (0,005°F). Несмотря на свою высокую чувствительность, нервные окончания человека совершенно не подходят для неразрушающего теплового контроля.

Даже если бы люди обладали такой же способностью чувствовать тепло, как животные, которые могут находить теплокровную добычу в темноте, все равно потребовался бы более совершенный инструмент для обнаружения тепла. Поскольку люди имеют физиологические ограничения способности чувствовать тепло, были разработаны сверхчувствительные к тепловому излучению механические и электронные устройства. Эти устройства стали обычными для проведения теплового контроля при решении бесчисленного количества задач.

История развития инфракрасной технологии

Слово «инфракрасный» означает «за красным», что указывает на место, которое занимают эти длины волн в спектре электромагнитного излучения. Термин «термография» происходит от двух корней, которые означают «температурное изображение». Корни термографии уходят к немецкому астроному, сэру Вильяму Гершелю, который в 1800 г. проводил эксперименты с солнечным светом.

Тепловое изображение остаточного тепла, переданного рукой при прикосновении к поверхности окрашенной стены, легко обнаружить с помощью тепловизора

Тепловое изображение остаточного тепла, переданного рукой при прикосновении к поверхности окрашенной стены, легко обнаружить с помощью тепловизора.

 

Гершель открыл инфракрасное излучение, когда пропускал солнечный свет через призму, и располагал чувствительный ртутный термометр на различных цветах для измерения температуры. Гершель обнаружил, что при переходе за красный цвет в область, известную как «невидимое тепловое излучение», температура повышалась. «Невидимое тепловое излучение» лежало в области электромагнитного спектра, которая сейчас называется инфракрасным излучением. оно так же является электромагнитным излучением.

Через двадцать лет, немецкий физик Томас Зеебек открыл термоэлектрический эффект. Это привело к открытию итальянским физиком Леопольдо Нобили термобатареи на основе ранних версий термопар, в 1829 г. Это простое контактное устройство основано на следующем явлении. При изменении температуры между двумя разнородными металлами появлялась разность потенциалов. Партнер Нобили, Македонио Меллони, вскоре превратил термобатарею в термостолбик (последовательное расположение термобатарей) и сфокусировал на нем тепловое излучение таким образом, что смог обнаруживать тепло тела с расстояния 9,1 м (30 футов).

В 1880 г., американский астроном Сэмюел Лэнгли использовал болометр для обнаружения тепла тела коровы с расстояния более 300 м (1000 футов). В болометре измеряется не разность потенциалов, а изменение электрического сопротивления, связанное с изменением температуры. Сын сэра Вильяма Гершеля, сэр Джон Гершель, используя устройство, называемое эвапорографом, получил первое инфракрасное изображение в 1840 г. формирование теплового изображения происходило за счет различной скорости испарения тонкой пленки масла, и его можно было увидеть в отраженном свете.

Тепловизор – это устройство, которое получает тепловое изображение в инфракрасной области спектра без прямого контакта с оборудованием. См. рис. 1-1.

Рис. 1-1. Тепловизор – это прибор,  который  получает тепловое изображение в инфракрасной области спектра без непосредственного контакта с оборудованием.

 

Первые модели тепловизоров были построены на фоторезистивных приемниках излучения. С 1916 по 1918 гг. американский изобретатель Теодор Кейс экспериментировал с фотосопротивлениями для получения сигнала не за счет нагрева, а благодаря прямому взаимодействию с фотонами. В результате был получен более быстрый, более чувствительный приемник излучения на основе эффекта фотопроводимости. В течение 1940-1950-х гг. развитие тепловизионной технологии было связано с возрастающим применением для военных целей. Немецкие ученые обнаружили, что при охлаждении фоторезистивного приемника излучения, его характеристики улучшаются.

Тепловизоры для невоенных целей применялись не только до 1960-х гг. Хотя ранние тепловизионные системы были громоздкими, медленными, имели низкую разрешающую способность, их использовали в промышленности для обследования систем передачи и распределения электроэнергии. В 1970-х гг. достижения в области военных применений привели к появлению первых переносных систем, которые можно было использовать для диагностики зданий и неразрушающего контроля.

В 1970-х гг. тепловизионные системы были прочными и надежными, однако качество изображений было низким по сравнению с современными тепловизорами. К началу 1980-х гг., тепловидение широко применялось в медицине, в основных отраслях промышленности, а так же для обследования зданий. Тепловизионные системы калибровались таким образом, чтобы можно было получать полностью радиометрические изображения, чтобы радиометрические температуры можно было измерить по всему изображению. Радиометрическое изображение – это тепловое изображение, содержащее рассчитанные значения температур для всех точек на изображении.

ПОЛЕЗНО ЗНАТЬ

Первые тепловизоры отображали тепловизионное изображение с помощью черно-белой электронно-лучевой трубки. Запись изображения можно было осуществлять только с помощью фотографии или магнитной ленты.

 

На замену сжатому или сжиженному газу, который использовался для охлаждения тепловизоров, пришли более надежные улучшенные устройства охлаждения. Так же были разработаны и широко применялись менее дорогие тепловизионные системы на основе пировидиконов (пироэлектрических видиконных трубок). Хотя они не были радиометрическими, тепловизионные системы на основе пировидиконов имели небольшой вес, были переносными и работали без охлаждения.

В конце 1980-х гг. военные сделали доступными  для широкого применения матричные приемники излучения (матрицы в фокальной плоскости, FPA). Матрицы в фокальной плоскости состоят из массива (обычно прямоугольного) инфракрасных приемников излучения, расположенных в фокальной плоскости объектива. См. Рис. 1-2.

Рис. 1-2. Матричный приемник излучения (матрица в фокальной плоскости, FPA) – это устройство получения изображения, состоящее из массива (обычно прямоугольного) чувствительных к излучению пикселей, расположенных в фокальной плоскости объектива.

 

Это был значительный прогресс по сравнению со сканирующими приемниками излучения, которые использовались с самого начала. Это привело к повышению качества изображения и пространственного разрешения. Типичные матричные приемники излучения современных тепловизоров имеют размер от 16х16 до 640х480 пикселей. Таким образом, пиксель является самым маленьким отдельным элементом матричного приемника излучения, который может улавливать инфракрасное излучение. Для специальных задач существуют приемники излучения, размер которых превышает 1000х1000 элементов. Первое число представляет собой количество вертикальных колонок, а второе – количество горизонтальных линий, отображаемых на дисплее. Например, матрица размером 160х120 элементов в сумме имеет 19200 пикселей (160 пикселей х 120 пикселей = 19200 пикселей всего).

Развитие технологии матриц в фокальной плоскости, использующих различные типы приемников излучения, далеко шагнуло, начиная с 2000 г. Длинноволновые тепловизоры – это тепловизоры, которые чувствительны к инфракрасному излучению в диапазоне длин волн от 8 до 15 мкм. Микрон (мкм) – это единица измерения длины, равная одной тысячной миллиметра (0,001 м). Средневолновые тепловизоры – это тепловизоры, чувствительные к инфракрасному излучению в диапазоне длин волн от 2,5 мкм до 6 мкм. В настоящее время существуют как длинноволновые, так и средневолновые полностью радиометрические тепловизионные системы, часто с функцией наложения изображений и температурной чувствительностью 0,05 °С (0,09°F) и менее.

За прошедшее десятилетие стоимость таких систем снизилась больше чем в десять раз, а качество значительно повысилось. Кроме того, значительно возросло использование программного обеспечения для обработки изображений. Практически все современные инфракрасные системы используют программное обеспечение для облегчения анализа и подготовки отчетов. отчеты можно быстро создать и отправить в электронном виде через интернет, либо сохранить в одном из широко используемых форматов, таких, как PDF, а так же записать на одном из цифровых устройств хранения данных различных типов.

 

Принципы работы тепловизоров

Полезно иметь общее представление о том, как работают тепловизионные системы, поскольку для термографистов чрезвычайно важно учитывать пределы возможностей оборудования.

Это позволяет более точно выявлять и анализировать возможные проблемы. Тепловизоры предназначены для регистрации инфракрасного излучения, которое испускается объектами. См. Рис. 1-3. Объект обследуется с помощью тепловизора.

Инфракрасное излучение фокусируется с помощью оптики тепловизора на приемнике излучения, который выдает сигнал, обычно в виде изменения напряжения или электрического сопротивления. Полученный сигнал регистрируется электроникой тепловизионной системы. Сигнал, который дает тепловизор, превращается в электронное изображение (термограмму), которое отображается на экране дисплея. Термограмма – это изображение объекта, обработанное электроникой для отображения на дисплее таким образом, что различные градации цвета соответствуют распределению инфракрасного излучения по поверхности объекта. Таким образом, термографист может просто увидеть термограмму, которая соответствует тепловому излучению, приходящему с поверхности объекта.

Объект обследуется с помощью тепловизора

Рис. 1-3. Объект обследуется с помощью тепловизора. Назначение тепловизора – регистрация инфракрасного излучения, испускаемого объектом

 

термограмма

Термограмма – это обработанное электроникой изображение на дисплее, где различные градации цвета соответствуют распределению инфракрасного излучения по поверхности объекта.

 

Компоненты тепловизора

Обычный тепловизор имеет несколько общих для всех подобных приборов компонентов, включающих объектив, крышку объектива, дисплей, приемник излучения и обрабатывающую электронику, органы управления, устройства хранения данных, а так же программное обеспечение для обработки данных и создания отчетов. Эти компоненты могут изменяться в зависимости от типа и модели тепловизионной системы. См. Рис. 1-4.

Объективы. Тепловизоры имеют как минимум один объектив. Объектив  тепловизора собирает инфракрасное излучение и фокусирует его на приемнике излучения. Приемник излучения выдает сигнал и создает электронное (тепловое) изображение или термограмму. Объектив тепловизора используется для того, чтобы собрать и сфокусировать приходящее инфракрасное излучение на приемнике излучения. объективы большинства длинноволновых тепловизоров изготовлены из германия. Пропускание объективов улучшается за счет тонкопленочных просветляющих покрытий.

ПОЛЕЗНО ЗНАТЬ

Из-за постоянной необходимости экономить энергоресурсы, муниципалитеты и правительственные агентства производят авиационную инфракрасную съемку с помощью военных авиационных тепловизионных систем. Такая съемка необходима для того, чтобы общины, жители и коммерческие организации могли получить информацию о тепловых потерях в зданиях.

тепловизоры

Рис. 1-4. Обычные тепловизоры имеют несколько  общих компонентов, к которым относятся объектив,  крышка  объектива, дисплей, органы  управления  и ручка с ремешком.

Так же тепловизоры обычно имеют футляр для переноски и хранения прибора, программного обеспечения и другого вспомогательного оборудования для использования в полевых условиях.

Дисплеи. Тепловое изображение отображается на жидкокристаллическом дисплее (ЖКД), расположенном на тепловизоре. Дисплей должен иметь большой размер и высокую яркость, чтобы изображение на нем можно было легко увидеть в различных условиях освещенности в различных местах работы. На дисплее часто отображается дополнительная информация, такая как уровень заряда аккумулятора, дата, время, температура объекта (в °F, °C, или K), видимое изображение и цветовая шкала температур. См. Рис. 1-5.

дисплей тепловизора

Рис.  1-5.  Тепловое  изображение отображается на жидкокристаллическом дисплее (ЖКД) тепловизора.

 

Приемник излучения и схемы обработки сигнала. Приемник излучения и схемы обработки сигнала используются для превращения инфракрасного излучения в полезную информацию. Тепловое излучение от объекта фокусируется на приемнике излучение, который обычно изготовлен из полупроводниковых материалов. Тепловое излучение генерирует измеряемый сигнал на выходе приемника излучения. Сигнал обрабатывается электронными схемами внутри тепловизора, чтобы на дисплее прибора появилось тепловое изображение.

Органы управления. С помощью органов управления можно выполнить разнообразные электронные настройки для улучшения теплового изображения на дисплее. В электронном виде изменяются такие настройки, как диапазон температур, тепловой уровень и диапазон, цветовая палитра и настройки слияния изображения. Так же можно установить значение коэффициента излучения и отраженной фоновой температуры. См. Рис. 1-6.

органы управления тепловизором

Рис. 1-6. С помощью органов управления можно изменить значение необходимых переменных, таких как диапазон температур, уровень и ширина диапазона, а так же другие настройки.

 

Устройства хранения данных. Электронные цифровые файлы, содержащие тепловые изображения и дополнительные данные, сохраняются на различных типах электронных карт памяти или устройств хранения и передачи данных. Многие инфракрасные тепловизионные системы так же позволяют сохранять дополнительные голосовые и текстовые данные, а так же соответствующее видимое изображение, полученное с помощью встроенной камеры, работающей в видимом спектре.

Программное обеспечение для обработки данных и создания отчетов. Программное обеспечение, которое используется с большинством современных тепловизионных систем, является функциональным и удобным для пользователя. Цифровые тепловые и видимые изображения импортируются на персональный компьютер, где их можно просмотреть с использованием различных цветовых палитр, произвести другие настройки всех радиометрических параметров, а так же воспользоваться функциями анализа. Обработанные изображения можно вставить в шаблоны отчетов и либо отправить на принтер, либо сохранить в электронном виде, или отправить заказчику через интернет.

www.eti.su

Применение тепловизора. Как работает тепловизор, принцип работы и устройство тепловизора.

0

Применение тепловизора – это быстро расширяющаяся область с почти не ограниченным потенциалом. Любой объект во вселенной излучает энергию, причём большая часть энергии приходится на невидимое человеческому глазу инфракрасное излучение. Принцип работы тепловизора основан на этом явлении: по интенсивности инфракрасного излучения можно не только разделять объекты разной природы или даже участки однородной на вид поверхности, но и определить многие их скрытые свойства.

Зачем нужен тепловизор военным?

В наше время применение тепловизор нашёл во многих сферах, важнейшей из которых, естественно, стало военное дело. Какое основное применение тепловизор находит в армии?

Одним из важнейших препятствий для военных операций всегда была ночь. Не лучше обстоят дела в условиях плохой видимости: в тумане, дыму, при снегопаде и других подобных явлениях, когда привычным образом наблюдение невозможно. Ранее для обнаружения противника в темноте в армии использовали так называемые приборы ночного видения, с которыми часто путают тепловизор. Однако, принцип работы тепловизора даёт ему значительные преимущства. Дело в том, что ПНВ улавливает видимый свет и усиливает сигнал и, таким образом, позволяет видеть при плохом освещении. Но, в отличие от тепловизора, такой прибор абсолютно бесполезен при плохой видимости – он просто сделает туман ярче – да и в полной темноте, например, в помещении ПНВ не покажет абсолютно ничего.

Как работает тепловизор? Принцип работы тепловизора основан на регистрации теплового излучения. Прибор не требует никакой, даже минимальной подсветки для работы. А поскольку все объекты, так или иначе, излучают тепло, применение тепловизоров в военном деле трудно переоценить. Для нужд армии выпускаются тепловизоры в виде биноклей, монокуляров, прицелов для оружия, ими оснащают различное оборудование, системы наведения и многое другое, ведь формат прибора и применение тепловизора при решении специфических задач критически важно для такого тепловизора. Как правило, приборы, используемые военными, имеют самые современные матрицы с высоким разрешением, обеспечивающие наилучшее качество изображения и высокую частоту смены кадров. Другой важной особенностью таких тепловизоров является возможность работы на больших дистанциях, для чего они всегда оснащаются мощной оптикой.

И если раньше приборы этого класса были доступны только военным, сейчас всё большую популярность набирают так называемые тепловизоры для охоты, устройства, которые используют профессиональные охотники, а также сотрудники охранных служб, детективные агентства и пр. По своим характеристикам, возможностям и принципу работы тепловизор для гражданского использования немногим уступает аналогу из арсенала военных и помогает значительно сократить время поиска дичи, особенно если речь идёт о ночном выслеживании. Применение тепловизора для охоты не ограничивается собственно охотой – так, например, его возможности позволяют обнаружить движущийся автомобиль на дистанции больше километра. Как правило, гражданские тепловизоры этого класса выпускаются в форме монокуляров, биноклей и прицелов для охотничьего оружия.

Медицинские тепловизоры

Другим важным аспектом человеческой деятельности всегда была медицина. Применяются тепловизоры и здесь. Температура нашего тела – отличный показатель общего здоровья. Изменение температуры, как известно, сигнализирует о неполадках в работе организма, именно поэтому при первичном обследовании пациенту всегда ставят градусник. Но следует понимать, что обычный контактный термометр всегда измеряет температуру в одном и том же месте. Но на самом деле температура тела неоднородна, и для каждого органа характерна своя. Устройство тепловизора даёт возможность значительно углубить температурный анализ здоровья

Обследование тепловизором человека помогает найти область воспаления с точностью до мм и определить, например, патогенный процесс в одном из органов без внедрения различных зондов или оперативного вмешательства. Таким образом, применение тепловизора для диагностики не только даёт возможность определить, болен пациент или здоров, но и с высокой точностью указать источник проблемы и поставить диагноз. Основной областью применения таких приборов является диагностика опухолей и различных проблем с кровеносной системой.

Современный медицинский тепловизор – это, как правило, диагностическая система, состоящая из собственно детектора излучения и компьютера для быстрой обработки полученного сигнала. Одно из важнейших достоинств медицинского тепловизора является его полная безопасность для пациента в виду отсутствия постороннего излучения, оперативного вмешательства и – принцип работы тепловизора медицинского полностью аналогичен работе других приборов этого типа

Использование тепловизоров в промышленности и строительстве

Широкое применение тепловизоры нашли в химической промышленности и металлургии – области производства, в которых нередко используются высокотемпературные процессы, сложные системы охлаждения и агрегаты. На каждом крупном объекте регулярно проводится обследование тепловизором зданий, инфраструктуры и оборудования. Устройство помогает в решении множества задач и позволяет, например:

  • провести диагностику доменных печей;
  • теплоизоляции агрегатов;
  • проверить герметичность;
  • динамически контролировать температурные изменения в химическом реакторе.

Промышленный тепловизор – это всегда переносной прибор, как правило, выполненный в формате "пистолетной ручки". Устройство тепловизора этого типа рассчитано на сравнительно небольшую рабочую дистанцию, но оснащён матрицей с большим разрешением и работает в широком температурном диапазоне. Приборы этого класса рассчитаны на регулярное использование и позволяют на месте выявить неполадки в оборудовании при анализе теплового изображения на экране прибора.

Тепловизионные приборы широко применяются в энергетике, причём как на больших предприятиях, так и в работе электрика в ЖЭК. При их помощи проводится диагностика высоковольтных линий и вышек, как с земли, так и с воздуха, а обследование тепловизором трансформатора или электрощитка позволяет выявить и оперативно устранить многие неисправности.

В строительстве зданий применение тепловизоров, в основном, сводится к поиску слабых мест в теплоизоляции через обнаружение точек с перепадами температур.

На первый взгляд удивительно, но принцип работы тепловизора не редко бывает полезен и при строительстве дорог. Как и во многих других случаях, при укладке асфальтового покрытия необходим температурный контроль: каждый элемент - асфальт, смола, щебень - должен прогреваться до определённой температуры. Только контролируя температурный режим можно обеспечить надлежащее качество дорожного покрытия. К сожалению, в виду относительной новизны метода и стоимости оборудования, в России к тепловизионной диагностике прибегают только при строительстве крупных магистралей. Однако, такая диагностика вносит неоспоримый вклад в их качество.

Тепловизионная съёмка с воздуха

Особняком стоит тепловизионная аэрофотосъёмка, на больших площадях позволяющая выявлять очаги пожаров, в том числе и тлеющие без дыма. Это значительно упрощает работу службе МЧС. Кроме того, тепловизионная аэрофотосъёмка помогает выявить утечки на трубопроводах, экономя массу средств и времени транспортникам. Основное требование к приборам, применяемым для съёмки с воздуха, аналогично таковому и для других камер – это высокая разрешающая способность. Так же важен небольшой размер и вес камеры, если речь идёт о съёмке с беспилотного аппарата.

Как работает тепловизор в быту

Ещё совсем недавно тепловизоры как сложные и дорогостоящие приборы были доступны только военным и специалистам, но прогресс не стоит на месте, и совершенствование технологии производства сделало этот класс устройств весьма распространённым явлением в самых различных сферах, не исключая и бытовое применение.

Например, в последние годы набирает популярность обследование тепловизором помещения при покупке жилья или приёме недавно построенной дачи. Перед собой мы видим красивое помещение и мысленно представляем, как будем в нем жить. Но позже может оказаться, что квартира или дом совершенно не пригодна для комфортного проживания, поскольку в ней холодно зимой и очень жарко летом. Не лучше ли заблаговременно заказать и провести проверку помещения тепловизором? Таким образом, вы сможете понять насколько выгодную сделку вам предложили, тем более что с каждым годом применение тепловизора стоит всё меньше, а сами приборы становятся доступнее.

Впрочем, использование тепловизоров в быту не ограничивается недвижимостью. Так, многие автолюбители заказывают обследование тепловизором своего транспортного средства. С помощью устройства осуществляется поиск нарушения тепло- и гидроизоляции, контроль работы подшипников, сцеплений, валов, муфт, цепных приводов и воздушных компрессоров. Тепловизор помогает найти неполадку в работе автомобиля на ранней стадии, что позволяет избежать серьезной поломки и траты большой суммы денег на ремонт. Особенно это актуально, когда и сам автомобиль, и его ремонт стоят на порядок больше тепловизора.

Как правило, тепловизор для бытового применения оснащён матрицей с небольшим разрешением и имеет ограниченный набор функций, но внешне и по принципу работы напоминает промышленные приборы. Принцип работы тепловизора предельно прост в управлении и не требует никакой подготовки для использования. Однако, несмотря на относительно невысокую цену, такой прибор по-прежнему обладает большей частью достоинств, а применение тепловизора этого класса позволяет эффективно решать задачи теплового контроля в ЖКХ, авторемонтном деле, бытовом строительстве и пр.

0

www.rusgeocom.ru

Тепловизоры. Виды и работа. Устройство и применение. Особенности

Тепловизоры это устройства, с помощью которых можно контролировать распределение температуры измеряемой поверхности. Эта поверхность изображается на экране прибора в виде цветового поля. На этом поле определенный цвет соответствует некоторой температуре. На экране отображается интервал видимой температуры. Стандартное разрешение тепловизоров последних моделей составляет 0,1 градус.

В недорогих устройствах информация сохраняется в памяти прибора и при необходимости считывается через компьютер. Чаще всего такие приборы используют совместно с ноутбуком и специальной программой, принимающей информацию с тепловизора.

Впервые тепловизоры появились еще в 30-х годах прошлого века. Современные системы тепловизоров стали развиваться только в 60-х годах. Приемники теплового излучения были с одним элементом. Изображение в приемниках осуществлялось с помощью точечного смещения оптики. Такие приборы имели низкую производительность и давали возможность для наблюдения за изменениями температуры с малым быстродействием.

С развитием технического прогресса появились фотодиодные ячейки, способные хранить сигнал света. Стало возможным проектирования новых тепловизоров на базе матриц датчиков. С этих матриц сигналы поступают на дешифратор, далее на обработку в главный процессор прибора.

В определенной последовательности сигналы проецируются на матрицу с распределением температур с разными обозначенными цветами. Такой принцип дал возможность получить портативные автономные устройства, способные оперативно обрабатывать данные, позволяющие контролировать изменение температуры в реальном времени.

Перспективной разработкой новых тепловизоров стало использование неохлаждаемых болометров. Этот принцип основан на повышенной точности вычисления изменения сопротивления тонких пластин под воздействием излучения тепла всего спектра. Эта технология популярна во многих странах при производстве новых тепловизоров, к которым предъявляются высокие требования безопасности и мобильности. В нашей стране изготовление автономных тепловизоров с неохлаждаемыми болометрами начато в 2007 году.

Работа и конструктивные особенности

Излучение инфракрасного цвета фокусируется оптической системой тепловизора на приемнике, который подает сигнал в форме изменения сопротивления или напряжения.Электроника регистрирует полученный сигнал от системы тепловидения. В результате сигнал преобразуется в электронную термограмму. Она изображается на дисплее.

Термограммой называется изображение объекта, которое прошло обработку электронной системой для отображения ее на экране с различными цветовыми оттенками, соответствующими распределению инфракрасных лучей по площади объекта. В результате оператор видит термограмму, соответствующую излучению тепла, приходящего от исследуемого объекта.

Чувствительность детектора к излучению тепла зависит от его собственной температуры, и качества охлаждения. Поэтому детектор располагают в специальное охлаждающее устройство. Наиболее популярный вид охлаждения – это жидкий азот. Однако этот метод неудобный и довольно примитивный.

Другим видом охлаждения стали элементы Пельтье. Это полупроводники, способные обеспечить перепад температур при прохождении по ним электрического тока, и действующие по принципу теплового насоса. Чувствительность датчика тепловизора создается с помощью чувствительных полупроводников, выполненных из ртуть-кадмий-теллура, антимонида индия и других материалов.

Части и элементы тепловизора

Стоимость тепловизора довольно высока. Основными его элементами являются объектив и матрица (приемник излучения), которые составляют 90% стоимости всего прибора. Такие матрицы сложны в изготовлении. Объектив невозможно выполнить из стекла, так как стекло не пропускает инфракрасные лучи. Поэтом для объективов используют дорогие редкие материалы (германий). В настоящее время ведутся поиски других недорогих материалов.

Другими составными частями прибора являются:

1 — Крышка объектива2 — Дисплей3 — Управление4 — Ручка с ремнем5 — Тепловизор6 — Пуск7 — Объектив8* — Электронная система9* — Память для хранения информации10* — Программное обеспечение

Объективы

В тепловизоре в обязательном порядке имеется хотя бы один объектив, который способен фокусировать излучение инфракрасных волн на приемнике излучения. Далее приемник подает электрический сигнал и образует тепловое (электронное) отображение, которое называется термограммой.

Чаще всего объективы изготавливают из германия. Чтобы оптимизировать пропускание света объективами, применяют просветляющие тонкопленочные покрытия. В комплект тепловизора обычно входит чехол для хранения и переноски устройства, другого дополнительного оборудования для применения прибора в полевых условиях.

Дисплеи

Отображение картины теплового излучения осуществляется на жидкокристаллическом экране (дисплее). Он должен иметь хорошую яркость и достаточный размер для легкого обзора изображения при различных условиях освещения, в полевых условиях. На экране обычно имеется вспомогательная информация. К ней относится цветовая шкала температур, время, дата, заряд батареи, температура объекта и другая полезная информация.

Схема обработки сигнала и приемник излучения применяются для модификации излучения инфракрасного света в необходимую полезную информацию. Фокусировка теплового излучения объекта осуществляется на специальный приемник. Он изготовлен из полупроводников. Тепловое излучение создает электрический сигнал на приемнике. Далее сигнал поступает на электронную схему, расположенную внутри прибора, после обработки сигнала электроникой, на экране возникает тепловое изображение.

Органы управления

С помощью этих элементов производятся различные настройки электронной системы для оптимизации изображения теплового излучения на дисплее. Такие настройки в электронном виде могут изменить цветовую гамму и слияние изображений, интервал теплового уровня. Также регулируется отраженная фоновая температура и коэффициент излучения.

Хранилище данных

Цифровые электронные данные, которые содержат изображения тепла и вспомогательные данные, могут сохраняться на электронных картах памяти различного типа, либо на устройствах передачи и хранения информации.

Большинство тепловизионных инфракрасных систем способны сохранять вспомогательные текстовые и голосовые данные, а также снимок изображения, которые получены при помощи внутренней встроенной камеры, работающей в спектре видимости человеком.

Создание отчета и программное обеспечение

Программное обеспечение, применяемое с многими современными системами тепловидение, является удобным и функциональным для оператора. Тепловые цифровые и видимые изображения копируются на компьютер или ноутбук. Там эту информацию можно проанализировать с применением разных цветовых палитр, осуществить другие регулировки радиометрических данных.

Также есть возможность применить встроенные опции проведения анализа. Обработанные картинки можно включить в образцы отчетов или отпечатать на принтере. Изображения также можно по интернету отправить заказчику, либо сохранить на компьютере в электронном виде.

Классификация

Тепловизоры делятся на несколько видов по различным признакам.

Наблюдательные преобразуют инфракрасные лучи в видимый для глаза свет по специальной цветовой шкале.

Измерительные способны определять температуру исследуемого объекта путем присвоения величине цифрового сигнала пикселей определенную соответствующую температуру. В итоге образуется изображение распределения температур.

Стационарные приборы служат для использования на предприятиях промышленности, где осуществляется контроль над соблюдением технологических процессов в интервале -40 +2000 градусов. Такие устройства оснащаются азотным охлаждением, чтобы создать нормальные условия для работы приемной аппаратуры. Такие системы состоят из тепловизоров 3-го поколения, выполненных на полупроводниковых матрицах фотоприемников.

Переносные устройства тепловидения разработаны на основе неохлаждаемых кремниевых микроболометров. Вследствие чего появилась возможность отказаться от применения громоздкой и дорогой аппаратуры охлаждения. Такие приборы имеют все преимущества стационарных моделей. При этом их можно использовать в труднодоступных местах. Многие переносные тепловизоры можно подключать к компьютеру для обработки информации.

Часто приборы ночного видения путают с тепловизорами. Однако между ними большая разница. Устройство ночного видения может работать при малой освещенности, так как усиливает свет. Часто попавший в объектив свет ослепляет человека. Для тепловизора не нужен свет, так как его принцип действия основан на тепловых инфракрасных лучах.

Сфера применения тепловизоров

Тепловидение используется в различных сферах нашей жизни. Так, например эти устройства используются в охране объектов и военной разведке. Ночью человека можно через этот прибор заметить в полной темноте на удалении до 300 метров, а военную технику видно до 3 км.

В настоящее время существуют видеокамеры микроволнового рабочего диапазона с выходом изображения на компьютер. Чувствительность такой камеры несколько сотых долей градуса. Следовательно, если вы взялись за ручку двери ночью, то тепловой отпечаток после этого будет видно около 30 минут.

Большую перспективу имеют тепловизоры в определении дефектов в разных установках. Это имеет место в случае повышения или понижения температуры определенного места механизма, или устройства. Иногда определенные дефекты выявляются только тепловизором. На опорных тяжелых конструкциях (мостах) при усталостном старении металла, возникающих деформациях в некоторых местах выделяется больше тепла, чем положено. Поэтому есть возможность диагностики дефектов без разборки объекта.

В результате можно сказать, что тепловизоры применяются в качестве оперативного контролера безопасности объектов.

Широкое применение тепловизоры нашли в медицине в качестве диагностики патологии различных заболеваний. У здорового пациента температура тела распределена симметрично от средней линии всего тела. Если эта симметрия нарушается, то это является критерием диагностики заболеваний тепловизором.

Термография является современным методом диагностики в медицине. Этот метод основан на обнаружении инфракрасного излучения тела человека в зависимости от его температуры. Интенсивность и распределение излучения тепла в норме определяется своеобразными физиологическими процессами, которые происходят в организме в глубоких и поверхностных органах.

Разные состояния патологии характеризуются несимметричностью распределения температуры тела. Это находит свое отражение на термографической картине. Такой факт имеет важное прогностическое и диагностическое значение. Об этом свидетельствуют многие клинические исследования.

Существуют два главных вида термографии:

  1. Телетермография.
  2. Контактная холестерическая термография.

Телетермография действует на модифицировании инфракрасных лучей от тела человека в сигнал электрического тока, изображающегося на дисплее тепловизора.

Контактная холестерическая термография работает по принципу оптических свойств жидких кристаллов, проявляющихся изменением цвета в радужные цвета при нанесении их на излучающие поверхности. Более холодным местам соответствует синий цвет, а горячим – красный.

Применение в промышленности
  • Контроль процессов обмена тепла в выхлопных системах, двигателях и радиаторах автомобиля.
  • Проверка и проектирование тормозной системы автомобиля.
  • Контроль ультразвуковой сварки.
  • Разработка климатической системы автомобиля.
  • Контроль качества монтажных плат в электронике.
  • Контроль режима сварки.
  • Выявление несоосности валов, подшипников, шестерен.
  • Анализ напряжений металла.
  • Контроль изоляции и герметичности емкостей для жидкостей.
  • Определение свойств теплоизоляции.
  • Выявление потерь тепла в помещениях.
  • Диагностика конструкций ограждений.
  • Предотвращение пожаров.
  • Выявление утечки газа из газопровода.
  • Контроль технологических процессов.
  • Проверка электрооборудования.
  • Проверка работоспособности тепловых трасс.
  • Выявление мест подсоса холодного воздуха.
  • Контроль теплоизоляции трубопроводов.
  • Проверка оборудования с наполнением маслом.
  • Проверка статора генератора.
  • Контроль газо- и дымоходов.
Похожие темы:

 

electrosam.ru

Тепловизор. Виды. Работа. Применение. Как выбрать. Устройство

Тепловизор представляет специальное устройство, которое используется для определения теплового излучения в исследуемом пространстве. В большинстве случаев это устройство имеет дисплей, на котором высвечивается цветная картинка. Каждый цвет здесь означает конкретный уровень температуры. Благодаря визуализации картинки теплового излучения открываются многочисленные возможности использования подобного прибора, к примеру, в военной и охранной сфере, в измерении и контроле технологического процесса.

Работа данного устройства строится на том, что от каждого объекта исходят электромагнитные волны в различном диапазоне частот. Это касается и инфракрасного спектра, то есть «теплового излучения». Но с единственной оговоркой, что интенсивность указанного излучения находится в прямой зависимости от текущей температуры объекта. При этом она практически не зависит от степени освещенности поверхности в видимом диапазоне. В результате тепловизионный прибор помогает получить дополнительную информацию, которую невозможно получить обычным зрением или приборами, работающими в видимом диапазоне частот.

Виды

Тепловизор по разрешающей способности инфракрасного датчика матрицы может классифицироваться на следующие классы:

  1. Базовый – порядка 160×120.
  2. Профессиональный – до разрешения в 640×480.
  3. Экспертный – разрешение более 640×480.

Модели тепловизионных приборов могут иметь неохлаждаемый или охлаждаемый сенсор. В охлаждаемых вариантах датчик позволяет «видеть» на дальних расстояниях с высочайшей чувствительностью. Однако подобные устройства чаще всего являются стационарными, так как система охлаждения увеличивает массу и габариты устройства. Подобные приборы часто применяются в лабораториях или в качестве перевозимых устройств на автотранспорте. Неохлаждаемые приборы применяются практически повсеместно.

В зависимости от измерительного диапазона тепловизионные приборы делят на следующие виды:
  • Строительные приборы, которые работают до температуры в 350 градусов по Цельсию. Их применяют для энергетического аудита строений, оценки теплоизоляционных свойств стен, протечек трубопроводов и тому подобное.
  • Промышленные приборы, которые работают свыше 350 градусов по Цельсию. Их используют для диагностических работ механических и электрических устройств, проверки электрического оборудования, машиностроительных систем и тому подобное.
  • Высокотемпературные приборы, которые работают свыше 1000 градусов по Цельсию. Их используют в специфических случаях: для осуществления контроля техпроцессов, выполняемых при высоких температурах, диагностических исследованиях промышленных и иных устройств с узлами, подвергающихся высокой степени нагревания.
Также тепловизионные приборы бывают следующих видов:
  • Наблюдательные приборы, которые преобразуют инфракрасное излучение в видимое изображение в соответствии со специальной цветовой шкалой.

  • Измерительные приборы, которые определяют температуру объекта с помощью соотношения определенной температуры цифровому пикселю. В результате появляется картинка распределения температур.

  • Стационарные устройства часто используются на промышленных предприятиях, где необходимо контролирование технологических процессов. Подобные прибора часто имеют азотное охлаждение для обеспечения требуемых условий функционирования приемной аппаратуры.

  • Переносные приборы выполняются на базе неохлаждаемых кремниевых микроболометров. Такие агрегаты удобны в применении, и можно легко переносить, и применять в разных труднодоступных местах.
 
Устройство
Переносной тепловизор имеет следующие основные элементы:

  1. Объектив. Для его изготовления применяются редкие материалы, к примеру, германий. Использование стекла недопустимо, так как через него не проходит инфракрасное излучение. Объектив фиксирует инфракрасное излучение. Для оптимизации пропуска света используются просветляющие тонкопленочные покрытия.
  2. Матрица, то есть приемник излучения. На данный элемент приходится большая часть цены устройства.
  3. Крышка объектива – предохраняет объектив от повреждения.
  4. Дисплей, на нем отображаются данные, высвечивается изображение. В большинстве случаев применяется жидкокристаллический экран. Кроме тепловой информации на нем часто высвечиваются вспомогательные данные в виде заряда аккумулятора, времени, шкалы температур и иной важной информации.
  5. Ручка с ремнем.
  6. Элементы управления. При помощи них осуществляется настройка электронной системы.
  7. Электронная система, включающая систему обработки информации. Предназначена для модификации инфракрасного излучения в видимое изображение.
  8. Устройство хранения информации и ряд иных дополнительных элементов. Большинство современных приборов имеют карты памяти, которые можно вытащить, чтобы передать информацию на персональный компьютер. Предустановленные программы позволяют провести анализ картинки, в том числе выполнить их обработку для последующей печати или сохранения.
Принцип действия
  • Оптический элемент, куда входят линзы из редкого материала, фиксирует инфракрасное излучение.
  • Далее тепловое излучение направляется на матрицу, которая имеет высокую чувствительность к инфракрасному излучению.
  • Затем сложные микросхемы получают данные с матрицы, генерируя видеосигнал. В нем каждой температуре объекта соответствует определенный цвет картинки.
  • На экране дополнительно высвечивается цветовая шкала соответствия.

  • Тепловизор к тому же может быть оснащен устройством памяти, чтобы можно было записать поток видео тепловой картинки и впоследствии сохранить его на ПК. В комплекте также могут идти микропроцессоры, при помощи которых можно выполнить небольшую аналитику.

В некоторых случаях тепловизор в своем оснащении имеет видеокамеру, благодаря которой удается получить объединенную картинку в видимом и инфракрасном спектре. Благодаря специальному программному обеспечению можно произвести их наложение, в том числе выполнить их обработку.

Применение

Сегодня тепловизор широко применяется в разных сферах деятельности человека. Вызвано это тем, что указанное оборудование способно фиксировать минимальные температурные изменения, которые не может заметить глаз человека. Для работы этого прибора необходимо только инфракрасное излучение. К тому же его можно использовать на расстоянии. При существенной дальности действия, прибор невозможно выявить средствами слежения. Ввиду указанных свойств данный прибор находит широчайшее применение в:

  1. Диагностике.
  2. Медицине.
  3. Военной сфере.
  4. Научных исследованиях.
  5. Промышленности.
  6. Строительстве.
  7. Системах автоматики и так далее.

Так в военной разведке или охране подобный прибор способен заметить технику в полной темноте на расстоянии до 3 километров. Человека же он может обнаружить на расстоянии порядка 300 метров. Медицинские устройства применяются для выявления различных заболеваний с помощью изучения параметров инфракрасного излучения. Научные тепловизионные приборы помогают проводить эксперименты и лабораторные исследования.

В промышленности устройства помогают контролировать нормальное течение технологических процессов и предотвращать внештатные ситуации. В строительстве тепловизионные приборы позволяют выявить дефекты в строительной конструкции. Это касается усталостного старения металла, появляющегося в зонах деформации. Именно там начинает выделяться большее количество тепла. Благодаря этому можно не разбирать конструкцию, чтобы отыскать дефекты и предотвратить их возможное разрушение.

Как выбрать

Тепловизор нужно правильно выбрать, чтобы при помощи него можно было решать поставленные задачи.

  1. При необходимости использования прибора в промышленных местах, где возможно его повреждение, следует уделить внимание его защите. Он должен иметь металлический корпус и защиту от внешнего воздействия, к примеру, влажности, пыли и так далее.
  2. Модельный ряд устройств весьма широк. Каждый производитель зачатую предлагает целую линейку приборов, который отличаются характеристиками и ценовым диапазоном. Если Вы хотите использовать прибор для повседневного использования в разных местах, то присмотритесь к переносному варианту. Для использования в промышленности для проведения высокоточных измерений одного технологического процесса нужен стационарный вариант.
  3. Прибор должен быть удобен в работе. Поэтому оцените расположение кнопок, в том числе элементов быстрого доступа. Устройство должно обеспечивать удобное и легкое его использование. Для постоянной работы с изображениями лучше всего остановиться на модели с сенсорным экраном.
  4. Важнейшим параметром устройства считается термочувствительность. Высокая чувствительность прибора позволит различить почти все предметы, имеющие практически одну температуру. Вызвано это тем, что объекты из разных материалов даже при одинаковой температуре излучают тепло с некоторыми различиями.
  5. Диапазон измерений температур важен для того, где Вы собираетесь использовать прибор. Необходимо точно знать, что Вы будете исследовать. К примеру, для исследования работы электрического двигателя вполне хватит устройства с диапазоном до 500 градусов по Цельсию.
Похожие темы:

 

tehpribory.ru

виды, назначение и принцип работы

Тепловизор военный — незаменимый и очень важный предмет. С применением современных интегрированных систем охраны и безопасности решается одна из важнейших задач наших дней — охрана объектов различного функционального назначения. Стратегически важные объекты — аэропорты, морские порты, базы, правительственные и ведомственные структуры и многие другие — требуют надлежащей охраны, особенно в местах военного конфликта. тепловизор военныйЭффективность такого режима всегда должна оставаться неизменно высокой, независимо от временного периода и погодных условий. Подобную задачу прекрасно выполняют передовые интеллектуальные системы видеонаблюдения. Такие комплексы включают в себя специальные тепловизионные камеры, которые с каждым днем становятся все более эффективными и качественными.

Тепловизор военный: ознакомление

Что же представляет собой стандартный тепловизор? Это устройство, основной функцией которого является обнаружение и распознавание цели в автоматическом режиме. В поле его зрения могут оказаться обычные люди, автомобили и другая военная техника, а также важные объекты. Чтобы охватить как можно большую площадь территории и правильно находить цели, широко используются автоматические радарно-оптические комплексы, радиолокационные станции которых выполняют функции указания и распознавания. Тепловизор, прицел которого позволяет военным вести точный огонь даже ночью, без проблем обнаруживает противника в полной темноте, прячущегося за препятствиями.тепловизор военный принцип работы

Классификация

Военные тепловизионные камеры подразделяются на два вида:

  1. Стационарные модели. Они достаточно объемных размеров, улавливают колебания температур в диапазоне от -20 до +20000 градусов. Такие аппараты относятся к разработкам третьего поколения. Для того чтобы обеспечить бесперебойную работу тепловизора, используют азотное охлаждение.
  2. Переносные аппараты. Тепловизор военный данного образца считается самой удачной разработкой. Они удобны, мобильны и функциональны, совершенно ничем не уступают своим предшественникам. Получаемая информация может мгновенно расшифровываться на компьютерах.

Достоинства прибора

Главное преимущество подобных станций — это высокая скорость работы, благодаря чему оперативно осуществляется обнаружение объекта, определение категории цели и ее траектории движения. Другими словами, с применением радиолокационного оборудования можно охранять крайне важные объекты, причем необходимые задания выполняются максимально точно и быстро.тепловизоры военного назначения

Недостатки тепловизионной камеры

Тепловизор военный имеет один серьезный недостаток – стоимость. Самыми важными факторами, которые определяют ценовую политику, являются объектив (прицел) и матрица. Конечно же, проводятся огромные работы для удешевления производства. Эксперты заверяют, что уже были найдены способы упростить производство матрицы. Однако с прицелом все намного сложнее. Для его изготовления используются очень дорогие материалы, при этом еще и достаточно редкие. Попытки найти альтернативную замену пока не увенчались успехом, но активные поиски не прекращаются. А это дает надежду на то, что в скором времени тепловизоры станут намного доступнее.тепловизор прицел

Принцип работы

Полученный сигнал об обнаружении цели сразу же автоматически передается на тепловизоры, интегрированные вместе с видеокамерами в единую модульную систему. Благодаря этому можно получить наиболее информативное и четкое изображение объекта с последующим отображением его на мониторе оператора в режиме реального времени. Именно это является основной задачей такого прибора, как тепловизор военный. Принцип работы этой системы дает возможность заранее фиксировать движение подозрительных объектов до возможного нарушения ими охраняемой территории. Это значит, что военные располагают достаточным количеством времени для оперативного разрешения возникшей ситуации в случае ее усложнения.цель в объективе тепловизора

Как применяют тепловизоры?

Применение стационарных тепловизоров, которые зачастую устанавливаются на поворотных платформах или военной технике, позволяет обеспечивать наиболее высокую надежность охраны важнейших объектов или проводить разведку территорий. Кроме того, информация о предполагаемых угрозах со стороны будет поступать со стопроцентной вероятностью, независимо от погодных условий и видимости.применение тепловизора в разведке территорииТепловизоры военного назначения также используются в системах безопасности. Это дает возможность охранять периметр ведомственных, правительственных и многих других важных объектов. Кроме людей такое оборудование способно распознавать транспортные средства, любые подозрительные предметы, своевременно обнаруживать задымление и многие другие нештатные ситуации, что позволяет быстро предпринять все необходимые меры.

fb.ru